# HOUSEHOLD DEBT AND MONETARY POLICY: REVEALING THE CASH-FLOW CHANNEL

Martin Flodén (Sveriges Riksbank and CEPR) Matilda Kilström (Stockholm School of Economics) Jósef Sigurdsson (Bocconi) Roine Vestman (Stockholm U and CEPR)

Conference on Monetary Policy Tools and Their Impact on the Macroeconomy Bank of Finland and CEPR September 13, 2020

# MORTGAGES – A RELATIVELY NOVEL RESEARCH DOMAIN IN MONETARY ECONOMICS

"[T]he structure of mortgage contracts may matter for consumption behavior. In countries like the United Kingdom, for example, where most mortgages have adjustable rates, changes in short-term interest rates (whether induced by monetary policy or some other factor) have an almost immediate effect on household cash flows. If household cash flows affect access to credit, then consumer spending may react relatively quickly. In an economy where most mortgages carry fixed rates, such as the United States, that channel of effect may be more muted. I do not think we know at this point whether, in the case of households, these effects are quantitatively significant in the aggregate. Certainly, these issues seem worthy of further study." — Ben S. Bernanke, Conference on The Credit Channel of Monetary Policy in the Twenty-first Century, 2007

### Monetary policy transmission through households

#### The standard model

- ▶ Monetary policy affects household behavior through intertemporal substitution (Euler equation)
- ▶ The wealth effects of a temporary change in the short interest rate is small for almost all households (life-time budget constraint almost unaffected)
- ▶ This implies a homogenous response to consumption

#### LITERATURE

### Empirical

- ▶ Interest rate channel: Attanasio and Weber (2010), Jappelli and Pistaferri (2010), Boivin et al. (2011)
- ➤ Cash-flow channel and the mortgage market: Calza et al. (JEEA, 2013), Di Maggio et al. (AER, 2017), Cloyne, Ferreira, and Surico (ReStud, 2019)

### Theory

- ▶ Rule-of-thumb consumers: Campbell and Mankiw (1990)
- ► Mortgage burden and monetary policy: Bernanke and Gertler (1995), Mishkin (2007)
- ▶ Distributional effects: Doepke and Schneider (JPE, 2006), Sterk och Tenreyro (JME, 2018)
- ▶ Recent models: Auclert (AER, 2019), Garriga, Kydland, and Sustek (RFS, 2017; 2019), Greenwald (2018), Wong (2019), Eichenbaum, Rebelo, and Wong (2019), Berger et al. (2020), Kinnerud (2020)

# This paper investigates the Cash-Flow Channel in a Swedish setting

- ► Half of Swedish mortgages have a very short interest fixation period (<3 months)
- Considerable variation in the policy rate during period of investigation (2002–2007)
- ▶ Registry-based panel data set on income, balance sheets, and spending
- ▶ Regression specification motivated by theory

### THEORY

- $1. \ \, {\rm A \ simple \ (simplest?) \ model \ of \ hand-to-mouth \ behavior}$
- $2. \ \, {\rm A}$  simple quantitative model of the cash-flow channel

### A SIMPLE MODEL OF HAND-TO-MOUTH BEHAVIOR

- $u(c) = \frac{c^{1-1/\sigma}}{1-1/\sigma}$
- ▶ Intertemporal budget constraint:  $c_{it} d_{it+1} = y_{it} d_{it}(1 + r_t)$
- $c_{it} = y_{it} d_{it} \cdot r_t$
- $ightharpoonup \Delta \log c_{it} \approx \theta \cdot \Delta \log y_{it} \theta \cdot \frac{d_i}{y_i} \cdot \Delta r_t \text{ where } \theta \approx 1$

HtM households:  $\Delta \log c_{it} \approx \theta \cdot \Delta \log y_{it} - \theta \cdot \frac{d_i}{y_i} \cdot \Delta r_t$ Optimizing unconstrained households:  $\Delta \log c_{it} = \sigma \cdot \Delta r_t$ 

# A SIMPLE QUANTITATIVE MODEL (1)

Adopted from Garriga et al. (RFS, 2017)

$$\max_{D_{1},\left\{c_{t}\right\}_{1}^{T}} \sum_{t=1}^{T} \beta^{t-1} u\left(c_{t}\right)$$

subject to  $A_0$  given and:

$$P_1(c_1+h) + A_1 = P_1w + D_1 + (1+i_1)A_0,$$

and for  $2 \le t \le T - 1$ :

$$P_t c_t + A_{t+1} = P_t w + (1 + i_t) A_t - i_t^D D_t - \gamma D_1$$

and in the last period:

$$P_T c_T = P_T w + (1 + i_T) A_T - (1 + i_T^D) D_T + \alpha P_T h.$$

# A SIMPLE QUANTITATIVE MODEL (2)

- ▶ Price level,  $\{P_t\}_1^T$  and nominal interest rate,  $\{i_t\}_1^T$ , are exogenous and known in advance
- ► The Fisher equation holds:

$$1 + i_t = (1+r) \cdot \frac{P_t}{P_{t-1}},$$

where r is the real interest rate.

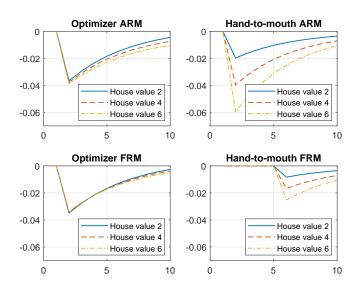
### Mortgage types

- ▶ ARM:  $i^D = i$  (amortization rate  $\gamma$  in the first period)
- **FRM**:  $i^D$  fixed for 5 years and then reset

### HOUSEHOLD TYPES AND SHOCKS TO THE INTEREST RATE

### Household types

- ▶ Optimizing households
- ▶ HtM households:  $A_t = 0$  for  $t \ge 1$


### Ex post "MIT" shocks

- $\blacktriangleright$  i changes unexpectedly to  $r+\delta$  , temporarily or with some persistence
  - $i_{\tau+j} = r + \delta \rho^j$
- ightharpoonup Optimizing households adjust optimally (adjust  $\{c_t\}, \{A_t\}$ )
- ▶ HTM household's response:  $c_t = w i_t^D \frac{D_t}{P_t} \gamma \frac{D_1}{P_t}$



# Consumption responses of four household types to a 1 p.p.

#### INTEREST RATE SHOCK



# REGRESSION ESTIMATES BASED ON SIMULATION Variation in h and $\tau$ , observations from time period when shock hits

Share ARM

Share HtM

 $\Delta \log c_{i,\tau} = \alpha_i + \beta DTI_{i,\tau-1} \times \Delta i_{\tau} + \gamma X_{i,\tau-1} + \varepsilon_{i,\tau}$ 

|                         | (1)     | (2)     | (3)     | (4)     | (5)     |
|-------------------------|---------|---------|---------|---------|---------|
| $DTI_i \times \Delta i$ | -0.081  | -0.337  | -1.282  | -0.434  | -0.210  |
|                         | (0.004) | (0.010) | (0.008) | (0.027) | (0.029) |
| Constant                | -0.000  | -0.029  | 0.002   | -0.015  | -0.001  |
|                         | (0.001) | (0.002) | (0.001) | (0.005) | (0.005) |
|                         |         |         |         |         |         |
| Observations            | 423     | 423     | 423     | 1692    | 1692    |
| R-squared               | 0.690   | 0.812   | 0.993   | 0.210   | 0.057   |
|                         |         |         |         |         |         |

|                         | (1)     | (2)     | (3)     | (4)     | (5)     |
|-------------------------|---------|---------|---------|---------|---------|
| $DTI_i \times \Delta i$ | -0.081  | -0.337  | -1.282  | -0.434  | -0.210  |
|                         | (0.004) | (0.010) | (0.008) | (0.027) | (0.029) |
| Constant                | -0.000  | -0.029  | 0.002   | -0.015  | -0.001  |
|                         | (0.001) | (0.002) | (0.001) | (0.005) | (0.005) |
| Observations            | 423     | 423     | 423     | 1692    | 1692    |
| R-squared               | 0.690   | 0.812   | 0.993   | 0.210   | 0.057   |
| Persistent shock        | No      | Yes     | Yes     | Yes     | Yes     |
| Fisher effect           | No      | No      | No      | No      | Yes     |

1.0

0.0

1.0

1.0

0.5

0.5

0.5

0.5

1.0

0.0

# REGRESSION ESTIMATES BASED ON SIMULATION Variation in h and $\tau$ , observations from time period when shock hits

Share ARM

Share HtM

 $\Delta \log c_{i,\tau} = \alpha_i + \beta DTI_{i,\tau-1} \times \Delta i_{\tau} + \gamma X_{i,\tau-1} + \varepsilon_{i,\tau}$ 

1.0

0.0

|                         |         | 1       | •       |         | ,       |
|-------------------------|---------|---------|---------|---------|---------|
|                         | (1)     | (2)     | (3)     | (4)     | (5)     |
| $DTI_i \times \Delta i$ | -0.081  | -0.337  | -1.282  | -0.434  | -0.210  |
|                         | (0.004) | (0.010) | (0.008) | (0.027) | (0.029) |
| Constant                | -0.000  | -0.029  | 0.002   | -0.015  | -0.001  |
|                         | (0.001) | (0.002) | (0.001) | (0.005) | (0.005) |
| Observations            | 423     | 423     | 423     | 1692    | 1692    |
| R-squared               | 0.690   | 0.812   | 0.993   | 0.210   | 0.057   |

| Constant         | -0.000  | -0.029  | 0.002   | -0.015  | -0.001  |
|------------------|---------|---------|---------|---------|---------|
|                  | (0.001) | (0.002) | (0.001) | (0.005) | (0.005) |
|                  |         |         |         |         |         |
| Observations     | 423     | 423     | 423     | 1692    | 1692    |
| R-squared        | 0.690   | 0.812   | 0.993   | 0.210   | 0.057   |
|                  |         |         |         |         |         |
| Persistent shock | No      | Yes     | Yes     | Yes     | Yes     |
| Fisher effect    | No      | No      | No      | No      | Yes     |
|                  |         |         |         |         |         |

1.0

0.0

1.0

1.0

0.5

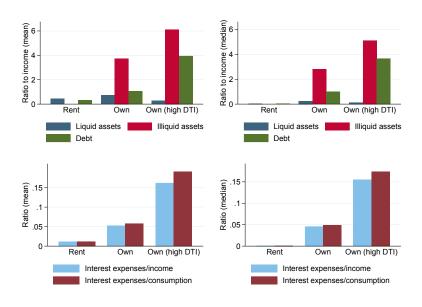
0.5

0.5

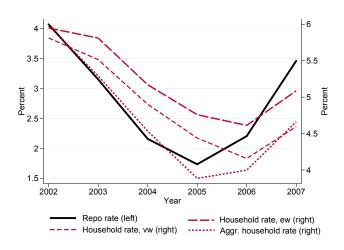
0.5

#### SUMMARY

- ► HtM households' responses
  - are approximately proportional to their DTI ratio
  - do not depend much on the relationship between the nominal interest rate and inflation (short-term)
- Optimizing households' responses
  - are smaller than HtM households', unless the shock is very persistent, and independent of their DTI ratio
  - ▶ to an immediate positive shock to interest expenses (i.e., ARM) require access to a buffer of liquid assets or credit


### Data

### Registry-based panel data from Statistics Sweden 2000–2007


- ▶ Start from representative sample of Swedish households (LINDA)
- Demographic variables
- Incomes from labor and capital
- ▶ Balance sheets (financial and real assets, debt, interest expenses)
- Match on returns on specific stocks and mutual funds
- ► Imputation of spending:
  - $ightharpoonup c_{it}$  the only unknown in the intertemporal budget constraint
  - $c_{it} + a_{it} d_{it} = y_{it} + (1 + r_{it}^a)a_{it-1} (1 + r_{it}^d)d_{it-1}$
  - ▶ We follow Koijen, Van Nieuwerburgh, and Vestman (2015)

▶ Sample restriction

# HOUSEHOLDS WITH HIGH DTI HAVE LITTLE LIQUID ASSETS AND A HIGH INTEREST EXPENSE SHARE



### Interest rates in our data set vs. aggregate rates



# ARMS VS. FRMS IN THE AGGREGATE



### EMPIRICAL STRATEGY

$$\Delta \log c_{i,t} = \alpha_i + \delta_t + \beta \Delta r_t \times DTI_{i,t-2} + \mathbf{X}'_{i,t} \gamma + \varepsilon_{i,t}, \tag{1}$$

- $ightharpoonup \Delta r_t$ : policy rate or aggregate household rate
- $\triangleright$   $\delta_t$ : Year FEs
- $ightharpoonup \alpha_i$ : Household FEs to capture selection into mortgage contracts and unobs char.
- $ightharpoonup \mathbf{X}_{i,t}$ : basic controls
- $\triangleright$   $\beta$  captures consumption responses due to cross-sectional variation in interest-rate sensitivity, less aggregate effect
- ▶ Standard model  $\beta \approx 0$  (response to  $\Delta r_t$  soaked up by  $\delta_t$ )
- ▶ HtM  $\beta \approx 1$

### IV ESTIMATION

- Reverse causality: monetary policy responds to households' economic conditions
- ▶ Monetary policy shocks: separation between anticipated and unanticipated changes of  $\Delta r_t$
- ▶ Change of 1-month T-bill at the day of a monetary policy announcement to isolate the shock (e.g., Kuttner (2001), Cochrane and Piazessi (2002), Gurkaynak et al. 2005; Gertler and Karadi (2015))

Graph of MP shocks

# Spending responses to changes in the policy rate

|                                | (1)       | (2)       | (3)       | (4)       |
|--------------------------------|-----------|-----------|-----------|-----------|
|                                |           | О         | LS        |           |
|                                | All Hou   | ıseholds  | Home      | owners    |
| $\Delta r \times \mathrm{DTI}$ | -0.260*** | -0.266*** | -0.199*** | -0.211*** |
|                                | (0.058)   | (0.058)   | (0.075)   | (0.075)   |
| Liquid assets-to-income        | No        | Yes       | No        | Yes       |
| Mean DTI                       | 0.88      | 0.88      | 1.27      | 1.27      |
| Observations                   | 265,642   | 265,642   | 153,964   | 153,964   |
| Clusters (households)          | 64,125    | 64,125    | 37,514    | 37,514    |

### Spending responses to changes in the policy rate

| <br>(1) | (2) | (3) | (4) |
|---------|-----|-----|-----|
|         |     |     |     |

TT 7

|                                |           | IV          |            |           |  |
|--------------------------------|-----------|-------------|------------|-----------|--|
|                                | All Hot   | ıseholds    | Homeowners |           |  |
| $\Delta r \times \mathrm{DTI}$ | -0.400*** | -0.400***   | -0.413***  | -0.415*** |  |
|                                | (0.078)   | (0.078)     | (0.103)    | (0.103)   |  |
|                                |           |             |            |           |  |
| Liquid assets-to-income        | No        | Yes         | No         | Yes       |  |
| Mean DTI                       | 0.88      | 0.88        | 1.27       | 1.27      |  |
| Observations                   | 265,642   | $265,\!642$ | 153,964    | 153,964   |  |
| Clusters (households)          | 64,125    | 64,125      | 37,514     | 37,514    |  |

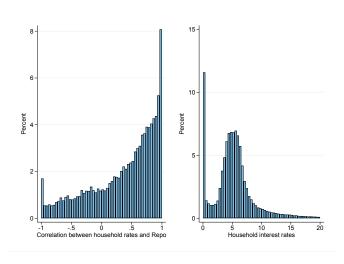
MPC: 0.19 - 0.34

# SPENDING RESPONSES TO CHANGES IN THE AGGREGATE HOUSEHOLD INTEREST RATE

|                                | (1)       | (2)       | (3)       | (4)       |
|--------------------------------|-----------|-----------|-----------|-----------|
|                                |           | O         | LS        |           |
|                                | All Hou   | ıseholds  | Home      | owners    |
| $\Delta r \times \mathrm{DTI}$ | -0.622*** | -0.631*** | -0.594*** | -0.616*** |
|                                | (0.087)   | (0.087)   | (0.114)   | (0.114)   |
| Liquid assets-to-income        | No        | Yes       | No        | Yes       |
| Mean DTI                       | 0.88      | 0.88      | 1.27      | 1.27      |
| Observations                   | 265,642   | 265,642   | 153,964   | 153,964   |
| Clusters (households)          | 64,125    | 64,125    | 37,514    | 37,514    |

# SPENDING RESPONSES TO CHANGES IN THE AGGREGATE HOUSEHOLD INTEREST RATE

|  |  | (1) | (2) | (3) | (4) |
|--|--|-----|-----|-----|-----|
|--|--|-----|-----|-----|-----|


TV

|                                | 1 V         |             |           |           |  |  |  |
|--------------------------------|-------------|-------------|-----------|-----------|--|--|--|
|                                | All Hot     | ıseholds    | Home      | owners    |  |  |  |
| $\Delta r \times \mathrm{DTI}$ | -0.529***   | -0.528***   | -0.538*** | -0.539*** |  |  |  |
|                                | (0.111)     | (0.111)     | (0.146)   | (0.146)   |  |  |  |
| Liquid assets-to-income        | No          | Yes         | No        | Yes       |  |  |  |
| Mean DTI                       | 0.88        | 0.88        | 1.27      | 1.27      |  |  |  |
| Observations                   | $265,\!642$ | $265,\!642$ | 153,964   | 153,964   |  |  |  |
| Clusters (households)          | 64,125      | 64,125      | 37,514    | 37,514    |  |  |  |

MPC: 0.40 - 0.50

### ARMs vs. FRMs

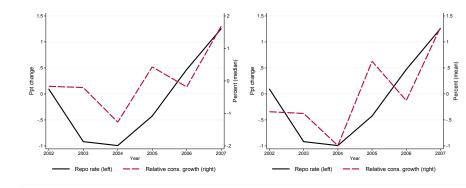
#### HOUSEHOLDS' IMPLIED INTEREST RATES AND THE POLICY RATE



### ARMs vs. FRMs

### Extended specification

$$\Delta \log c_{i,t} = \alpha_i + \delta_t + \sum_{q=1}^{5} \lambda_q \text{ Interest fixation}_{i,q} \times \Delta r_t \times \text{DTI}_{i,t-2}$$
$$+ \sum_{q=1}^{5} \eta_g \text{ Interest fixation}_{i,q} \times \Delta r_t + \mathbf{X}'_{i,t} \gamma + \varepsilon_{i,t}$$


Interest fixation<sub>i,q</sub>: quantile q in c-s distribution of correlations

# ARMs vs. FRMs: Spending responses

|                                                                      | (1)       | (2)       | (3)         | (4)       |
|----------------------------------------------------------------------|-----------|-----------|-------------|-----------|
|                                                                      | O         | LS        | Ι           | V         |
| Interest fixation <sub>1</sub> $\times \Delta r \times \mathrm{DTI}$ | -0.102    | -0.107    | 0.000       | -0.004    |
| Interest fixation <sub>2</sub> $\times \Delta r \times \mathrm{DTI}$ | -0.072    | -0.074    | -0.447***   | -0.448*** |
| Interest fixation <sub>3</sub> $\times \Delta r \times \mathrm{DTI}$ | -0.381*** | -0.384*** | -0.492***   | -0.495*** |
| Interest fixation <sub>4</sub> $\times \Delta r \times \mathrm{DTI}$ | -0.438*** | -0.439*** | -0.383**    | -0.385**  |
| Interest fixation <sub>5</sub> $\times \Delta r \times \text{DTI}$   | -0.440*** | -0.448*** | -0.395*     | -0.406*   |
| Interest fixation <sub>1</sub> $\times \Delta r$                     | 0.626***  | 0.608***  | -0.322      | -0.312    |
| Interest fixation <sub>2</sub> $\times \Delta r$                     | 0.626***  | 0.611***  | 0.391       | 0.405     |
| Interest fixation <sub>3</sub> $\times \Delta r$                     | 0.520**   | 0.507**   | -0.024      | -0.009    |
| Interest fixation <sub>4</sub> $\times \Delta r$                     | 0.272     | 0.262     | -0.532      | -0.508    |
| Interest fixation <sub>5</sub> $\times \Delta r$                     | 0.421*    | 0.421*    | -0.215      | -0.189    |
| Liquid assets-to-income                                              | No        | Yes       | No          | Yes       |
| Observations                                                         | 265,642   | 265,642   | $265,\!642$ | 265,642   |
| Clusters (households)                                                | 64,125    | 64,125    | 64,125      | 64,125    |

Dispersion in elasticities  $\sim 0.90$ Dispersion in MPCs  $\sim 0.73$ 

# ARMS VS. FRMS: RELATIVE SPENDING GROWTH



Relative spending growth =  $\Delta \log c$  of high DTI and corr> median

### The role of Liquid Assets

- ▶ 8 groups: high/low DTI, Corr, liquid assets to income
- ► Extended specification:

$$\Delta \log c_{i,t} = \alpha_i + \delta_t + \sum_{k=1}^{8} \omega_k \operatorname{Group}_{i,k} \times \Delta r + \mathbf{X}'_{i,t} \gamma + \varepsilon_{i,t}, \qquad (2)$$

# The role of Liquid Assets

|                           | Group 1               | Group 2 | Group 3   | Group 4     | Group 5        | Group 6  | Group 7  | Group 8  |
|---------------------------|-----------------------|---------|-----------|-------------|----------------|----------|----------|----------|
| DTI                       | High                  | High    | High      | High        | Low            | Low      | Low      | Low      |
| Mortgage                  | ARM                   | ARM     | FRM       | FRM         | ARM            | ARM      | FRM      | FRM      |
| Liquid ATI                | Low                   | High    | Low       | High        | Low            | High     | Low      | High     |
|                           | A. Summary statistics |         |           |             |                |          |          |          |
| Disp. income              | 308                   | 359     | 278       | 344         | 211            | 260      | 207      | 257      |
| Age                       | 47                    | 50      | 46        | 49          | 50             | 56       | 49       | 56       |
| Household size            | 2.84                  | 3.01    | 2.68      | 2.92        | 2.12           | 2.02     | 2.27     | 2.03     |
| Consumption               | 290                   | 331     | 265       | 314         | 210            | 255      | 208      | 253      |
| Debt                      | 573                   | 604     | 470       | 563         | 49             | 49       | 45       | 42       |
| DTI                       | 1.77                  | 1.66    | 1.61      | 1.60        | 0.22           | 0.18     | 0.21     | 0.16     |
| Interest rate             | 5.26                  | 4.71    | 4.98      | 4.87        | 6.90           | 5.51     | 6.72     | 5.62     |
| Interest share            | 8.58                  | 7.56    | 7.43      | 7.60        | 1.37           | 0.95     | 1.24     | 0.79     |
| Illiquid assets           | 873                   | 1,390   | 623       | 1,254       | 114            | 579      | 83       | 517      |
| Liquid assets             | 23                    | 196     | 20        | 189         | 12             | 241      | 10       | 227      |
| Liquid ATI                | 0.07                  | 0.57    | 0.06      | 0.57        | 0.05           | 0.92     | 0.04     | 0.87     |
| Loan-to-value             | 0.74                  | 0.52    | 0.72      | 0.52        | 0.27           | 0.13     | 0.23     | 0.12     |
| Observations              | 34,054                | 36,247  | 33,387    | 26,778      | 14,714         | 11,103   | 22,548   | 13,411   |
| Households                | 11,158                | 11,827  | 10,829    | 9,075       | 4,891          | 3,959    | 7,158    | 4,702    |
|                           |                       |         | В. С      | onsumption  | responses (O   | LS)      |          |          |
| $Group_k \times \Delta r$ | -0.689***             | -0.234  | 0.325*    | -0.065      | 0.202          | 0.942*** | 0.667*** | 0.969*** |
|                           | (0.201)               | (0.207) | (0.195)   | (0.226)     | (0.223)        | (0.305)  | (0.192)  | (0.283)  |
| F-test                    | 0.0                   | 60      | 0.1       | 25          | 0.0            | 0.040    |          | 340      |
|                           |                       |         | C. (      | Consumption | n responses (l | V)       |          |          |
| $Group_k \times \Delta r$ | -1.786***             | -0.550* | -0.789*** | -0.566*     | -0.890***      | 0.744*   | -0.306   | 1.120*** |
|                           | (0.280)               | (0.287) | (0.267)   | (0.307)     | (0.303)        | (0.409)  | (0.254)  | (0.368)  |
| F-test                    | 0.0                   | 01      | 0.5       | 04          | 0.0            | 01       | 0.0      | 001      |

### Conclusions

- ▶ We use a regression specification motivated by theory to test for the presence of the cash-flow channel on Swedish micro data
- ➤ On average, indebted households reduce spending by an additional 19–50 cents for every \$ increase in interest expenses
- ▶ The large dispersion in responses are driven by mortgage type (ARM vs. FRM) and the amount of liquid assets to income, consistent with theory

# CALIBRATION BACK

$$u(c) = \log c$$

$$T = 50$$

$$\beta = 0.98$$

$$i_t = i_t^D = 1/\beta - 1 = r$$

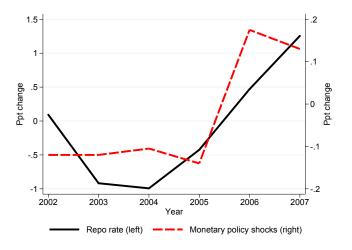
$$ightharpoonup \alpha = 0.5$$

$$\gamma = 0.01$$

$$\triangleright w=1$$

$$P_1h = 4$$

$$A_0 = 0$$


▶ Baseline: 
$$P_t = 1$$
 for all  $t$ 

$$\delta = 0.01$$

▶ If persistent shock:  $\rho = 0.8145 \; (0.95 \; \text{at quarterly freq.})$ 

- ► Age > 18
- ▶ Stable households that don't buy/sell their home
- ▶ Households in panel for  $\geq 3$  years
- ▶ Outliers:
  - Negative spending
  - ► Income distribution
  - ▶ Spending growth
  - ▶ Interest expense
- ► As a result, our sample is somewhat older and poorer than the population



