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Overview

• Paper uses data on taxi trips in NYC to investigate payment choice

• Research questions:
• Can merchants impact end users’ payment choice without explicitly charging 

more for some payment methods?
• If so, what are the likely drivers of merchants ability to do so?

• Research and policy implications:
• Should theoretical models capture merchants’ payment preferences?
• What potential bias may come from empirical work not capturing merchants’ 

ability to impact payment choice?
• Do high interchange fees on card payments slow down shift away from cash?

• Paper examines consumer payment choices using a novel panel data 
set of taxi trips
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Contributions

• New data source for studying payment choice: taxi trips
• Enables estimation of heterogeneity in preferences for payment methods 

among merchants

• Frontier IT and statistical tools used to perform the analysis
• Parallel processing on a high-performance cluster environment

• Distributed file systems to reduce memory requirements

• Implement a two-stage estimation procedure using modern iterative sparse 
least squares solver (LSMR).  

• Findings contribute to payments literature
• Payment choice is significantly impacted by merchants’ preferences

• Uncertainty could be a key driver of merchants’ ability to steer customers’ 
payment choice
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Literature

• Taxi data
• Farber (2014), Thakral and Tô (2017), and Hall et al. (2017) investigate labor 

market outcomes and responses using driver level data
• Haggag and Paci (2014) look at the impact of suggested tip amounts, on the 

in-cab payment screen, on the realized tip amount
• Buchholz (2018) and Fréchette et al. (2019) use dynamic equilibrium models 

to study matching frictions, regulations, and other features in the market

• Payment choice
• Klee (2008) studies payment choice using scanner data from grocery stores
• Wang Wollman (2016) test “threshold” theoretical framework of payment 

choice using retailer scanner data with 2 billion transactions
• Cohen Rysman Wozniak (wp) study payment choice using home scanner data, 

focusing on heterogeneity between households and transaction amount 
endogeneity
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Institutional details

• Taxi and Limousine Commission (TLC) of New York City mandated:
• 2004: electronic records of all taxi trips

• 2009: choice between cash and card payments for all taxi trips, no surcharging

• Exogenous pricing for most trips
• Fare determined through a combination of time and distance

• Transparent pricing rules

• Negotiated pricing for trips to New Jersey
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Data

• Source: TLC Trip Record Data
• Four years of data (2010-13), over 700 million trips
• Unbalanced panel, around 35,000 drivers
• Key variables: payment choice (cash/card), driver ID, trip details (# of 

passengers, duration, distance, cost, date, pickup/drop-off time and location)
• Data enhanced with local demographic information (from 2010 census)

• Advantages
• Panel nature allows for the use of fixed effects to capture unobserved 

heterogeneity in drivers’ ability to influence payment choice
• ‘Bigness’ of data allows for very accurate estimation

• Limitations
• Only two payment choices available to consumers
• Unable to link driver IDs across years
• Panel begins after card payments became mandatory
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Summary statistics: payment trend over time
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Summary statistics: differences between drivers
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Percentile

Variable Name Mean 10th 25th 50th 75th 90th

Number of trips 1,913 186 920 1,911 2,773 3,533

Number of trips paid with card 945 70 397 857 1,409 1,907
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ri

ve
rs Total amount ($) 15.57 12.27 13.13 14.49 16.37 19.07

Trip distance (miles) 3.7 2.8 3.1 3.4 3.9 4.8

Trip time (min) 15.2 12.7 13.5 14.5 15.9 17.9

Number of passengers 1.7 1.0 1.0 1.3 1.6 3.2
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s Total amount ($) 15.05 7.50 9.00 11.80 16.70 26.30

Trip distance (miles) 3.3 1.2 1.6 2.3 4.0 7.3

Trip Time (min) 14.6 6.1 8.6 12.1 18.0 25.3

Number of passengers 1.6 1 1 1 2 3



Regression analysis: modelling approach

Linear probability model with fixed effects

Yi = Xiβ + αd(i) + γt(i) + εi

where
• i is the taxi trip

• Yi is an indicator for whether the customer paid with card

• Xi is a set of observable characteristics for trip i, including the transaction 
value

• αd(i) is the individual effect for driver d(i)

• γt(i) is a set of time controls

• εi ~N(0,1) is the error term
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Identification and estimation challenges

• Identification challenges
• For cash transactions, we do not directly observe tip amount, so there might 

be a slight endogenity concern

• Estimation challenges
• With hundreds of millions of observations and forty thousand individual 

effects, OLS can take a week to estimate

• We are interested in the value of the coefficients of the license fixed effects, 
so we cannot use some of the traditional panel regression “tricks”

• Need to find a way to have accurate estimates for the fixed effects AND get p-
values/standard errors for a subset of the controls
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Variable (1) (2) (3) (4) (5)

Total amount ($) 0.91*** 0.84*** 0.89*** 1.94*** 4.09***

Passenger count -1.49*** -1.35*** -3.17*** -2.73*** -5.41***

Weekday am, 12-3 6.43*** 6.20*** 0.57* 4.49***

Weekday am, 3-6 1.97*** 1.95*** 2.31*** 1.13

Weekday am, 6-9 -4.41*** -1.75*** 1.44*** 7.37***

Weekday am, 9-12 0.44* 0.14 0.91*** 1.16***

Weekday pm, 3-6 -0.80*** -0.61*** -0.45* -1.14**

Weekday pm, 6-9 2.71*** 2.66*** 1.77*** 4.77***

Weekday pm, 9-12 -3.59*** -3.51*** -2.39*** -8.03***

% male -3.04*** -3.44***

Age (years) -0.01*** -0.01***

Income (1000s) 3.24*** 3.72***

Population (1000s) 0.54*** 0.65***

Driver FEs X X X

Location FEs X

Zone-to-zone FEs X

N (million) 271.1 271.1 271.1 270.5 268.1

Adjusted R2 .035 .066 .111 .159 .192

Note: all values are in percentage points; weekend time, driver, location, and zone-to-zone fixed effects are not reported 11



Regression results
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Conclusions (so far)

• Card usage has risen significantly over time

• Transaction value is a key driver of payment choice

• Commuters prefer to pay with card

• Contribution: drivers have a significant impact on payment choice

• Contribution: drivers’ impact on payment choice falls as customers’ 
uncertainty regarding payment choice falls 
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Potential next steps

• Investigate when drivers’ have the biggest impact on payment choice
• Tourists?
• Probably least for regular commuters

• Try to link driver IDs across years

• Model payment choice when price is negotiable
• Prices for trips between New York and New Jersey are determined through a 

process of bargaining between customer and taxi driver
• Evidence of taxi drivers using price incentives to steer customers’ payment 

choice?

• Implement discrete choice estimation procedure?
• Linear probability model used could be the only procedure tractable enough 

for the size of the data
• But, do we need to use all the data?
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THANK YOU
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