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Abstract

We build a model that captures bank run and fire-sale risk, i.e., a reduced potential to raise
capital from liquidity buffers under stress. The model setup is inspired by the Silicon Valley Bank
(SVB) meltdown in March 2023. Consequently, we use the model to explain how vulnerabilities in
SVB’s balance sheet evolved and we show which characteristics of the balance sheet are important
to monitor in order for banking system regulators to assess the run risk. By bringing a time series
of SVB’s balance sheet data to our model, we can demonstrate how the change in the funding and
respective asset composition—increasingly relying on held-to-maturity accounting standards masking
revaluation losses in securities portfolios—made SVB prone to run risk. The parsimonious framework
that we propose can serve as a supervisory analysis tool to monitor build-up of vulnerabilities in
banks’ balance sheets.

1 Introduction

As documented in Granja (2023), the years 2021–22 saw a substantial rise in banks’ reliance on held-to-
maturity (HtM) securities, effectively allowing them to ‘hide’ unrealized losses, e.g., in the face of raising
rates negatively impacting bond prices as with Silicon Valley Bank (SVB). For this reason, the HtM
framework has become described as a form of ‘hidden-to-maturity’ accounting.

Worryingly, Granja (2023) also shows how the HtM accounting rules were more frequently applied by
less capitalised banks with significant (run-prone) uninsured deposits in order to immunize their capital
from revaluation of securities held on-balance. In times of distress or when market expectations change,
this may be detrimental to those banks’ health and—as the March 2023 banking turmoil showed—to
financial stability as a whole.

In this paper, we build a stylized model to explain bank runs by banks’ financial conditions, as
observed by depositors, and to measure vulnerabilities of banks stemming from their balance sheet
composition, in particular as it pertains to the classification of HtM assets. We use the model to
compute deposit withdrawals in equilibrium that considers the share of run-prone uninsured deposits in
the bank’s funding, a pool of liquid resources, and those assets that can be mobilized with an impact on
bank’s profit & loss accounts, firstly because of liquidation frictions related to a price-mediated channel
of contagion, when banks need to sell securities to raise cash, and, secondly, due to accounting rules
requiring banks to fully mark-to-market HtM portfolios when any such securities are made available for
sale.

∗Stevens Institute of Technology, School of Business, Hoboken, NJ 07030, USA. zfeinste@stevens.edu.
†European Central Bank, Frankfurt, DE. grzegorz.halaj@ecb.europa.eu.
‡London School of Economics, Department of Statistics, London, WC2A 2AE, UK. a.sojmark@lse.ac.uk.

1



In this way, our model provides a parsimonious theoretical framework that can help regulators under-
stand some of the key drivers behind run related instabilities, in particular identifying threshold ratios of
banks’ balance sheets that delineate stable financial conditions from those conducive to bank runs. The
model also explains why changing financial ratios, such as the share of uninsured deposits or HtM secu-
rities in total assets, may result in abrupt jumps in banks’ solvency or liquidity conditions. Throughout
this work, we demonstrate various insights from our framework by running numerical case studies based
on balance sheet information from SVB in the run up to its failure in March 2023.

Kim et al. (2023) provide evidence that banks’ use of HtM is mainly guided by attempts to optimise
around capital requirements and accounting measures such as net income and owner’s equity (especially
when there are concerns about the equity becoming negative). In general, this suggests that banks will
maximise the amount of HtM they can reasonably hold subject to the loss of flexibility that this entails
in terms of selling and re-classification of assets. Crucially, the U.S. Generally Accepted Accounting
Principles require that a bank has both the positive intent and the ability to hold securities until maturity
if they are to be classified as HtM. It is only if this ability is taken seriously that there can be any case
for HtM accounting to have a stabilising effect, as the disregard of (sudden) deviations from the book
value may then be justified by the bank’s ability to not resort to remarking. While the findings of Kim
et al. (2023) show that the intent and/or ability often seem to be lacking, one would expect the banks to
at least assign some weight to avoid being forced into re-marking their HtM portfolio in most scenarios.
Firstly, this is what a bank should do if (at least partially) complying with the HtM rules and, secondly,
internal risk management should aim to avoid having to recognize large unrealized losses and signalling
bad conditions by re-marking as well as loosing the ability to reclassify the given assets as HtM again.
To capture this, we formulate a simple optimisation problem: for a given size of the balance sheet and
a random initial market price, the bank maximizes the amount of assets classified as HtM subject to a
chance constraint on the need to re-mark these HtM assets.

This optimisation problem presents a distilled view of the main decision variables and can provide a
simple explanation for why banks hold given levels of HtM assets. The way our model is set up makes
it a highly tractable problem that is easy to calibrate and implement numerically. Given observable
balance sheet data, the optimisation problem can therefore be used to imply a particular risk tolerance,
as measured by the threshold probability of the chance constraint, which can help shed light on a bank’s
ability to hold the assets to maturity.

We bring the model to balance sheet data of the SVB, based on publicly available sources, to assess
build-up of vulnerabilities of SVB ahead of its default in March 2023. The key results are as follows.
Financial standing of the SVB was very sensitive to fire sale conditions, i.e., the sensitivity of prices
of securities to liquidated volumes of securities. Unrealised losses in SVB’s balance sheet, related to
HtM accounting, hid important weaknesses of the banks and the model can indicate periods prior to
the March 2023 meltdown when the situation of the bank became dire. It is clear that fostering banks’
insured funding sources would be an important policy, or supervisory, tool to prolong the runway toward
default but would not avert the default completely. In general, the algorithm 3.2 which we derive from
our model to characterise default conditions offers an easy monitoring tool to assess vulnerabilities.

The remainder of the paper is structured as follows: in the next subsection, we briefly describe the
most relevant literature. Then, we introduce the model. In the subsequent section, we discuss case
studies of the SVB in light of the introduced model. Finally, we talk about how to better understand
allocation of assets to AfS and HtM accounting portfolios.
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1.1 Related literature

Bank runs associated with risky projects and short-term, flighty funding have been studied extensively
since the first comprehensive model of Diamond and Dybvig (1983) explaining banks’ fragility. They
tackle the duality of multiple equilibria in banks’ funding conditions that may arise, implying run or no-
run on banks. The mechanism described by them is about interplay of short-term (impatient) creditors,
risky return on securities held by banks (the return on the projects can only happen in the future
and if banks need to liquidate securities to meet depositors, the bank would be short of proceeds from
those projects and would run out of money). Heterogeneous beliefs would create partial runs, with
a fraction of depositors withdrawing cash. The original model speaks about very traditional banking
business model: client (household deposits) and long-term investments (mortgage or investment loans
to finance construction or tangible assets). In fact, the run risk holds for a variety of business models of
intermediaries. For instance, Uhlig (2010) demonstrates runs conducted by banks on other banks holding
short term and tradable assets, like asset-backed securities, a phenomenon observed during the Global
Financial Crisis.

The assumptions on the beliefs of depositors and the banks are key to understand how the equilibria
may arise. Global games (Morris and Shin, 2003) was a breakthrough technique to capture the idea
that depositors may be pushed to withdraw funding because of their belief that others are taking such
actions. This rationalizes, or endogenizes, the funding shocks.

Studies on bank-run mechanism depict certain important drivers that we also cover in our model.
First, fire sale happens when an institution sells under pressure and below the fundamental value of the
assets, e.g., because of liquidity or solvency constraints. Their role in runs were studied by Diamond
and Rajan (2011). Fire sale may depress asset prices so much that a bank holding them or selling them
becomes insolvent. This could precipitate a run on the bank, causing additional pressure for banks
to liquidate assets and further depressing their prices. Second, leverage is an important indicator of
potential vulnerabilities that depositors may take into account when assessing safety of their deposits.
We put leverage at the center of our model as a key object determining bank runs in equilibrium. Third,
accounting rules, e.g., fair value vs amortised cost accounting, and regulatory regimes, e.g., provisioning
for credit risk, can induce certain behaviours of market participants that contribute to a build-up of
financial vulnerabilities. We capture those as well to describe balance sheet elements that can be easily
mobilized to raise liquidity but are market to market instantaneously and those that can only be utilized
as a last-resort source of liquidity but are more immune to market volatility.

Despite the topic being researched extensively and a stringent liquidity regulation and policy inter-
vention frameworks in place, liquidity risk forcefully materializes again and again. In March 2023, Silicon
Valley Bank became a textbook example of a bank run. When SVB imploded, authorities looked deeper
into the unrealised losses that were the root cause of its meltdown (see, e.g., relevant FDIC and ECB
reports). As shown by Drechsler et al. (2023), runs may occur in the rising interest rate environment
since hedging may not be able to fully and at the same time eliminate interest and liquidity risk given
the negative convexity of bank deposit franchise value and typical long duration of bank assets. The
authors focus on a question about hedging of either liquidity or interest rate risk to prevent runs, which
is different to our primary goal to characterize liquidity and solvency vulnerabilities in the balance sheet.
Dependence of the fragility of banks on changes of rates in different rate environments (low vs high)
was studied by Ahnert et al. (2023) demonstrating the risk of runs increases more when rates rise from
low levels. SVB was exposed to this risk of rising interest rates, and from low levels observed during
the COVID-19 pandemic, but, additionally those losses were hidden given the accounting treatment of
held-to-maturity assets. One lesson learned from March 2023 is that the accounting rules masking the
adverse changes in fair value of banks assets and the very unstable funding sources (concentrated and
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easy to call back) may create conditions for the outflow of deposits to happen. Subsequent fire sales may
exacerbate banks’ solvency and the overall market conditions. As shown by Liu (2023), small shocks to
the balance sheet of banks may be amplified to systemic events.

We contribute to the growing literature on the impact of accounting standards on financial stability.
Reporting frameworks, but also incentives, play a role in market participants’ assessment of financial
conditions (Bischof et al., 2021). Especially relevant are the recent works Granja (2023); Kim et al.
(2023) on HtM accounting and how it is employed by banks in times of stress, as discussed above. We
study policy options to avert the bank run risk, esp., looking at deposit insurance and differently, e.g.,
to Altermatt et al. (2022) who study the role of redemption penalties. In particular, we build a model
that gives supervisors a tool to easily watch for banks approaching those cliffs and allow for supervisory
actions to preemptively mitigate related risks.

2 Balance Sheet Construction and Model Setup

We shall consider the simplest possible formulation of a balance sheet that allows us to capture the
features we are interested in. First of all, this entails two classes of liabilities (i.e., deposits): they can
be either insured LI ≥ 0 or uninsured LU ≥ 0 with the total liabilities given by L := LI + LU . Next,
we shall assume that assets of the bank can be one of three types: liquid, illiquid but marketable, or
illiquid and nonmarketable. Finally, in the case of illiquid but marketable assets, these may be classified
as either available-for-sale or held-to-maturity. Beyond this classification, these illiquid but marketable
securities are subject to the same market price. In summary, the stylized balance sheet will consist of
the following four asset classes:

(i) liquid (cash) assets x ≥ 0;

(ii) available-for-sale (AfS) illiquid assets s ≥ 0 with an initial mark-to-market value of sp for some
unit price p > 0;

(iii) held-to-maturity (HtM) illiquid assets h ≥ 0 valued in full (despite being subject to the same
market price as the AfS assets); and

(iv) nonmarketable illiquid assets ℓ ≥ 0.

With the above notation, the total assets are given by A = x+sp+h+ ℓ. The bank’s equity is then then
difference between this value and the total liabilities (L). These quantities determine the initial balance
sheet before any consideration of a run.

Remark 2.1. For now, we take the classification of AfS versus HtM as fixed and given. In Section 5,
we address this allocation by way of a simple optimisation problem, as discussed in the introduction.

Following Banerjee and Feinstein (2021), we assume that the illiquid, but marketable, holdings are
subject to price impacts if they need to be sold. The mark-to-market value of these assets is given by the
inverse demand function f : [0, s+h] → [0, p] for the initial price p > 0. As these liquidations are realized,
the bank realizes the volume weighted average price (VWAP) f̄(γ) := 1

γ

∫ γ

0
f(t)dt, for γ ∈ (0, s+h], with

f̄(0) := p. Note that f̄ is continuous at γ = 0 if f is continuous there. In this way, any unsold AfS assets
are valued at the price determined by f , any sold AfS assets are valued at the price determined by f̄ ,
and any HtM assets are (initially) valued at a fixed price of 1. Similarly, we will assume throughout that
the liquid (x) and nonmarketable (ℓ) assets have fixed value throughout this study.

The composition of the initial balance sheet and an example of a realized balance sheet after with-
drawals are illustrated in Figure 1. Based on the balance sheet, the uninsured depositors will withdraw
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Book Value
Assets Liabilities

Liquid x

Available for Sale
sp

Held to Maturity
h

Nonmarketable
ℓ

Insured Deposits
LI

Uninsured Deposits
LU

Equity

Realized Balance Sheet
Assets Liabilities
Liquid

x+ γf̄(γ)

Available for Sale
(s− γ)f(γ)

Held to Maturity
h

Nonmarketable
ℓ

Insured Deposits
LI

Uninsured Deposits

Withdrawals
w

Equity

Figure 1: Stylized book and balance sheet for the bank subject to withdrawal risks where held to maturity
assets need not be sold.

their funds following a leverage targeting strategy. The total withdrawals that result from this are de-
noted by w ∈ [0, LU ]. Specifically, the uninsured investors have a maximum leverage ratio λmax > 1

that they are willing to accept before withdrawals are initiated. The actual leverage ratio λ is defined
as the ratio of assets over equity, accounting for withdrawals and the corresponding losses that must
be recognized on the balance sheet. Notably, leverage is one of the key financial indicators determining
banks’ stability and has been used as an important variable in seminal bank run models (Gertler and
Kiyotaki, 2015).1 Furthermore, the leverage ratio is one of two key solvency indicators that is regulated
by capital standards, most importantly by Basel III regulation introduced after the Global Financial
Crisis. In particular, banks should keep it about a regulatory minimum and typically retain a voluntary
buffer, so as to minimize the risk that the leverage ratio falls below requirements.2 For these reasons,
we focus on the leverage ratio as the sole signal tracked by depositors. Naturally, the insured depositors
leave their funds at the bank even in a stress scenario—in particular, a bank run—due to the guarantee
of recovery in case of a bank failure.

Assumption 2.2. The inverse demand function f : [0, s+h] → (0, p] is non-increasing with initial price
f(0) = p, where p ∈ (0, 1].

Assumption 2.3. We assume LU > 0 as no withdrawals would occur otherwise.

For modelling purposes, we stress that the quantities LI , LU , and L remain fixed, as they capture the
liabilities of the initial balance sheet, before a run. The uninsured liabilities after withdrawals are then
given by LU −w. Since nothing is withdrawn from insured liabilities LI , the total liabilities thus become
L− w. Writing A(w, γ) for the total assets (with recognized losses) as a function of the withdrawals w

and the quantity of marketable securities sold γ, we can express the leverage ratio λ = λ(w, γ) as

λ =
Assets
Equity

=
A(w, γ)

A(w, γ)− (L− w)
, (1)

where
A(w, γ) = x+ γf̄(γ) + [s− γ]+f(γ) + [h− (γ − s)+](I{γ≤s} + f(γ)I{γ>s}) + ℓ− w,

1It is one of several key financial stress indicators (Duca and Peltonen, 2013).
2See https://www.bis.org/basel_framework/standard/LEV.htm
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for the given values of x, s, h, and ℓ.
In order to satisfy the withdrawals, the bank needs to raise liquid assets by (potentially) selling its

illiquid, but marketable, holdings. Specifically, the bank sells γ ∈ [0, s + h] so that x + γf̄(γ) ≥ w (if
possible).3 Based on the assumed balance sheet, if γ ≤ s then we assume that all liquidated assets were
AfS assets. However, if γ > s then the bank is liquidating HtM assets as well. Formally, if any HtM
assets are to be liquidated then that entire block of assets is immediately redenominated as AfS and
marked accordingly. Summarizing these two cases:

(i) if γ ≤ s then the bank holds x + γf̄(γ) in liquid assets, (s − γ)f(γ) in AfS assets, and h in HtM
assets;

(ii) if γ > s then the bank holds x+ γf̄(γ) in liquid assets, (s+ h− γ)f(γ) in AfS assets, and 0 HtM
assets.

However, in satisfying the withdrawals, the bank may fail due to having insufficient liquidity or
insufficient equity. We call these cases illiquidity and insolvency respectively.

(i) Illiquidity: The bank cannot meet withdrawals: w ≥ x+[s+h]f̄(s+h) or, equivalently, γ = s+h.

(ii) Insolvency: The bank has negative equity: x + γf̄(γ) + [s − γ]+f(γ) + [h − (γ − s)+](I{γ≤s} +

f(γ)I{γ>s}) + ℓ ≤ L.

Remark 2.4. If there are no price impacts on the illiquid asset, i.e., f ≡ p, then insolvency can only
occur at the moment that the HtM assets are re-marked as AfS assets.

For our analysis, we shall need a final assumption on the behavior of the realized balance sheet.
Recall λmax > 1. As a function of the quantity sold, we require that the rate increase in the realized
value of the (total) assets sold is always larger, by a factor of 1− 1

λmax
> 0, than the corresponding rate

of decrease in the market value of the remaining unsold assets. More precisely, we impose the following
technical assumption on the inverse demand function f .

Assumption 2.5. For the remainder of this work, we will assume that the mapping γ ∈ [0, s + h] 7→
γf̄(γ) + (1− 1

λmax
)(s+ h− γ)f(γ) is strictly increasing.

Lemma 2.6. Suppose the inverse demand function f is differentiable. Then Assumption 2.5 holds if
and only if the differential inequality

f(γ) > (1− λmax)(s+ h− γ)f ′(γ)

is satisfied, for all γ ∈ [0, s+ h].

Proof. This follows from the definition of f̄ and by differentiating the given function, insisting on its
derivative being strictly positive.

Remark 2.7. Under Assumption 2.5, we get that γ 7→ γf̄(γ)+(1− 1
λmax

)(s̄−γ)f(γ) is strictly increasing
on [0, s̄], for any s̄ ∈ (0, s+ h]. In particular, this holds for s̄ ∈ {s, s+ h} which we shall make use of in
Section 3. At the same time, we stress that the map γ 7→ γf̄(γ) + (s̄− γ)f(γ) is instead non-increasing
on [0, s̄], for any s̄ ∈ (0, s+ h], as one can readily verify (e.g. arguing as in Lemma 2.6).

We conclude this section by highlighting two common examples of inverse demand functions and
outlining the parameter choices for which our assumptions are satisfied.

3We impose a no short selling constraint so that γ ≤ s+ h throughout.
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Example 2.8. Take f(γ) := p(1 − bγ) as in, e.g., Greenwood et al. (2015). Then f̄(γ) = p(1 − b
2γ).

Naturally, b ≤ 1/(s + h) and hence Assumptions 2.2 is satisfied. By Lemma 2.6, Assumption 2.5 holds
if and only if either b < 1/(s+ h) for λmax ∈ (1, 2) or b < 1/[(λmax − 1)(s+ h)] for λmax ≥ 2.

Example 2.9. Take f(γ) = p exp(−bγ) as in, e.g., Cifuentes et al. (2005). Then f̄(γ) = p(1−exp(−bγ))
bγ

for γ > 0 and f̄(0) = p. Naturally, b ≥ 0, so Assumption 2.2 holds. By Lemma 2.6, Assumption 2.5
holds if and only if b < 1/[(λmax − 1)(s+ h)].

3 Clearing Prices and Bank Failures

Consider the balance sheet structure introduced in Section 2. We can now formulate the resolution of
a (potential) bank-run and the accompanying fire-sales as the solution to a simple clearing problem for
the amount of withdrawals w and the quantity of marketable securities sold γ.

We formalise this as the search for fixed points of the mapping Φ : [0, LU ]×[0, s+h] → [0, LU ]×[0, s+h]

defined by Φ = (Φw,Φγ), where

Φw(γ
∗) = LU ∧

[
λmaxL− (λmax − 1)(x+ γ∗f̄(γ∗) + [s− γ∗]+f(γ∗) (2)

+ [h− (γ − s)+](I{γ∗≤s} + f(γ∗)I{γ∗>s}) + ℓ)
]+

Φγ(w
∗, γ∗) = [s+ h] ∧ (w∗ − x)+

f̄(γ∗)
. (3)

Here, equation (2) is enforcing the leverage targeting strategy for the withdrawals of the depositors, while
(3) gives the quantity sold necessitated by the corresponding withdrawal requests. A pair (w∗, γ∗) ∈
[0, LU ]× [0, s+ h] is then a clearing solution if and only if it is a fixed point of Φ, meaning that we have

(w∗, γ∗) = Φ(w∗, γ∗) = (Φw(γ
∗) , Φγ(w

∗, γ∗)), (4)

provided the bank is solvent, i.e.

x+ γ∗f̄(γ∗) + [s− γ∗]+f(γ∗) + [h− (γ∗ − s)+](I{γ∗≤s} + f(γ∗)I{γ∗>s}) + ℓ > L. (5)

If (w∗, γ∗) satisfies (4), but violates (5), then the bank is insolvent. In that case, the values (w∗, γ∗)

correspond to the run having occurred and the bank only subsequently being declared insolvent. This
is arguably more in line with the timeline of events in an actual run, but one can of course also look for
the amount of liquidations γ that first induces technical insolvency by violating (5) during the run.

For clearing solutions corresponding to a run (i.e., w∗ > x) without causing illiquidity (i.e., γ∗ <

s + h), we have w∗ = x + γ∗f̄(γ∗) with all withdrawals being met, solvency issues aside. On the other
hand, illiquidity corresponds to clearing solutions with a quantity sold γ∗ = s + h and withdrawals
w∗ ≥ x+ (s+ h)f̄(s+ h). When a bank is left illiquid, the value of w∗ reflects the withdrawal requests
and not the actualized withdrawals, as the bank would generally not be able to cover all requests.

Proposition 3.1 (Existence). There exist minimal and maximal clearing solutions (w↓, γ↓) ≤ (w↑, γ↑).

Throughout, we work with the minimal solution, as this is the best case for the bank and represents
the solution that a run would most naturally arrive at. We have the following (exhaustive) algorithm for
finding the minimal clearing solution.

Proposition 3.2 (Clearing algorithm). The minimal clearing solution (w↓, γ↓) is determined by the
following algorithm:
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1. (No sales) If either LU ≤ x or λmaxL − (λmax − 1)(x + sp + h + ℓ) ≤ x, then γ↓ = 0 and
w↓ = LU ∧ [λmaxL− (λmax − 1)(x+ sp+ h+ ℓ)]+. Else, continue to next step.

2. (Run without re-marking HtM I) If

L− x− (1− 1
λmax

)(h+ ℓ) ∈ [(1− 1
λmax

)sp, sf̄(s)], and

LU ≥ λmaxL− (λmax − 1)(x+ γ∗f̄(γ∗) + (s− γ∗)f(γ∗) + h+ ℓ), for

γ∗f̄(γ∗) + (1− 1
λmax

)(s− γ∗)f(γ∗) = L− x− (1− 1
λmax

)(h+ ℓ), γ∗ ∈ [0, s],

then γ↓ = γ∗ and w↓ = x+ γ∗f̄(γ∗) ∈ (x, LU ). Else, continue to next step.

3. (Run without re-marking HtM II) If LU ∈ (x, x+ sf̄(s)] and LI ≥ (1− 1
λmax

)[(s−γ∗)f(γ∗)+

h+ ℓ] for γ∗ ∈ [0, s] solving γ∗f̄(γ∗) = LU − x, then γ↓ = γ∗ and w↓ = LU . Else, continue to next
step.

4. (Re-marking HtM I) If

L− x− (1− 1
λmax

)ℓ ∈ [sf̄(s) + (1− 1
λmax

)hf(s), (s+ h)f̄(s+ h)], and

LU ≥ λmaxL− (λmax − 1)(x+ γ∗f̄(γ∗) + (s+ h− γ∗)f(γ∗) + ℓ), for

γ∗f̄(γ∗) + (1− 1
λmax

)(s+ h− γ∗)f(γ∗) = L− x− (1− 1
λmax

)ℓ, γ∗ ∈ [s, s+ h],

then γ↓ = γ∗ and w↓ = x+ γ∗f̄(γ∗) ∈ (x, LU ). Else, continue to next step.

5. (Re-marking HtM II) If LU ∈ (x, x+(s+h)f̄(s+h)] and LI ≥ (1− 1
λmax

)[(s+h−γ∗)f(γ∗)+ ℓ]

for γ∗ ∈ [s, s + h] solving γ∗f̄(γ∗) = LU − x, then γ↓ = γ∗ and w↓ = LU . Else, continue to next
step.

6. (Illiquidity) If it gets to this final step, either

λmaxL− (λmax − 1)(x+ (s+ h)f̄(s+ h) + ℓ) ≥ LU and LU − x ≥ (s+ h)f̄(s+ h), or

λmaxL− (λmax − 1)(x+ (s+ h)f̄(s+ h) + ℓ) < LU and L ≥ x+ (s+ h)f̄(s+ h) + (1− 1
λmax

)ℓ,

in which case γ↓ = s+h with w↓ = LU or w↓ = λmaxL−(λmax−1)(x+(s+h)f̄(s+h)+ℓ) ∈ (x, LU ),
respectively.

When the algorithm terminates, one must additionally confirm that the candidate clearing solution leaves
the bank solvent, i.e., that (5) is satisfied. If the algorithm terminates before Step 6, but (5) is violated,
then the bank is liquid but insolvent. If the algorithm terminates in Step 6 and (5) is violated, then the
bank is both illiquid and insolvent.

4 Case studies based on the Silicon Valley Bank

The case of SVB default is an insightful example of bank balance sheet vulnerabilities leading to bank
runs and can be analysed using our framework. In the next sections we describe how different elements of
the SVB default story correspond to features of our model (subsection 4.1). Moreover, we run simulations
to illustrate some key drivers of the bank runs and to show effectiveness of some policy interventions,
fostering insured deposit base and a prudent allocation of assets between HtM and AfS portfolios. A
time series of SVB’s balance sheet prior to the default in March 2023 allows us to analyse how the bank’s
vulnerabilities evolved. Extrapolating from this statement, the model can be used then as a monitoring
tool of bank balance sheet vulnerabilities.
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4.1 Balance sheet dynamics of SVB

In a nutshell, as a report from the Federal Reserve Board shows (FRB, 2023), the Silicon Valley Bank
mismanaged its balance sheet growth caused by funding inflow from the cyclical technology and venture
capital (VC) sectors. Notably, it was partly supported by a period of exceptionally low interest rates
after the 2020 COVID-19 crisis. SVB invested those inflows of deposits in longer-term securities, i.e.,
held-to-maturity (HtM), government or agency-issued mortgage-backed securities (agency MBS). These
securities are low risk from a credit perspective and provide a predictable return based on the interest rate
at the time of purchase. However, in the monetary policy regime, the asset portfolios were not effectively
managed from the interest-rate risk perspective. Notably, SVB was actively removing hedges as rates
were rising. At the same time, SVB failed to manage the risks of its highly concentrated liabilities, which
proved much more unstable than anticipated.

Changing market conditions led to cash-constrained tech and VC-backed firms which started to
withdraw their deposit. The velocity of outflows was quickly accelerated as social networks, media, and
other ties reinforced a run dynamic that played out at remarkable pace. SVB reached a point in March
2023 when it was forced to announce a restructuring of its balance sheet, including a completed sale
of USD 21 billion of AFS securities for a USD 1.8 billion after-tax loss. Notably, the HtM accounting
regime was constraining the bank from further raising cash as dipping into HtM securities would result
in a reclassification of the whole HtM portfolio and booking unrealised HtM losses in SVB’s profit and
loss accounts.

These several factors, i.e., ailing management and governance, fragile business model, and changing
market conditions combined to lead to a detrimental bank run. Which of them were the most impactful
and which could be immunized to avert the collapse? Our model can be used to help address these
questions. Given how parsimonious our framework is, we can use publicly available information about
SVB to calibrate all crucial parameters of the model. Table 1 collects a time series of data characterizing
the evolution of SVB. Between Q1 2020 and Q1 2022, i.e., one quarter before the collapse, total deposits
grew more than threefold, from USD 56 billion to USD 181 billion. Only a small fraction of the funding
base was insured deposits (USD 9 billion out of the USD 181 billion in Q1 2022). The absorbed funding
was mostly invested into HtM securities (increase from USD 10 billion to USD 101 billion). When
expectations about interest rate increases built, and eventually interest rated started to rapidly raise,
the market value of the securities was gradually declining. However, thanks to the accounting treatment
regarding how their value would be reflected in the financial results, this was only reflected in a build-up
of the unrealized losses (increase from a gain of USD 0.8 billion to a loss of -15 USD billion in Q2 2022).
This meant that even though the reported leverage ratio was hovering around 7.0 and 8.0 (measured
by a ratio of total assets to Tier 1 capital), a leverage ratio factoring in the unrealized losses from HtM
securities, and also from AfS portfolios, soared to almost 40.0. The described collection of balance sheet
parameters of SVB is the main data source for the calibration of our model to run simulations to identify
some tipping point parameters in the unwinding of a bank run on SVB.

4.2 Drivers of bank runs and policy implications

Based on the calibrated model we run simulations to show how leverage ratio targeting of depositors,
fire sale price impact, unrealised losses and uncertainty of bank asset valuations impact bank run risk.
We also show effectiveness of some policy interventions, related to the allocation of liabilities between
insured and uninsured funding and of assets between available for sale and held for trading securities.

Target leverage ratio. By looking at the funding withdrawals (Figure 2) and asset liquidations in
equilibrium, we can analyse the evolution of vulnerabilities of SVB balance sheet. We do not observe
the targeted leverage ratio of the bank. However, we can infer its rough estimates from a relatively
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In USD billion Ratio
Total deposits Other funding Insured deposits Capital Total assets Cash AfS HtM Unrealised

Gains/Losses
(HtM)

Unrealised
Gains/Losses
(AfS)

Tier 1 lev. ratio Lev. ratio
implied by
Unrealised
Gains/Losses

2020 q1 56 8.9 5 10.1 75 8 20 10 0.8 1.6 6.4 6.0
q2 70 7.9 5 12.1 90 10 25 10 0.8 1.6 6.4 6.2
q3 80 6.5 5 13.5 100 12 28 12 0.8 1.6 6.4 6.3
q4 95 8.8 5 16.2 120 13 35 15 0.8 1.6 6.4 6.5

2021 q1 110 11.7 5 18.3 140 16 30 40 0.0 0.0 6.6 7.6
q2 130 18.3 6 21.7 170 18 25 60 0.0 0.0 6.8 7.8
q3 152 10.0 7 23.0 185 21 25 80 -0.5 0.0 7.0 8.2
q4 172 16.9 8 26.1 215 23 27 103 -1.0 0.0 7.2 8.6

2022 q1 181 17.3 9 26.7 225 22 27 101 -7.5 -1.5 7.4 12.7
q2 170 20.0 10 25.0 215 20 27 98 -11.5 -2.0 7.6 18.7
q3 162 28.5 10 24.5 215 19 27 95 -16 -3.0 7.8 39.2
q4 160 31.0 10 24.0 215 17 27 93 -15 -3.0 8.0 35.9

Table 1: Balance sheet evolution of the SVB
Numbers shown starting from the beginning of 2020 when the dynamics of assets and liabilities started
to materially change. “Lev. ratio implied by Unrealized Gains/Losses” = [Total assets]/([Capital]-
[Unrealised Gains/Losses (HtM)]-[Unrealised Gains/Losses (AfS)]); “Other funding” = calibrated such
that balance sheet identity is preserved and leverage ratio reported by SVB ([Tier 1 ratio]) equals to the
calculated leverage ratio (i.e., [Total assets]/[Capital]), “AfS” = securities in available for sale accounting
portfolios; “HtM” = securities in held-to-maturity accounting portfolios
Source: SVB financial reports and FRB (2023)

stable period before 2021 when policy interest rates were low and the expectations of the hikes were still
moderate, and SVB balance sheet did not start to balloon. The leverage ratio of SVB was hovering at
around 7.0, computed as total assets divided by Tier 1 capital. Given the uncertainty about the exact
leverage target, we consider a range of leverage ratios between 7.0 and 8.0. Until Q1 2021, funding
withdrawals implied by the model are very limited and can be fully covered by cash holdings of SVB,
depicted by the green bars. Only after, we can see rising equilibrium levels of funding withdrawals.
Moreover, they start to imply runs necessitating liquidation of AfS portfolios. Only as of Q4 2022, the
model indicated that runs following a higher leverage targeting could deprive SVB of available liquid
resources and lead to dipping into HtM portfolios.

Fire-sale price impact. The other significant parameter of the model is the fire-sale impact of
securities liquidations. This parameter is difficult to pin down (see Sydow et al. (2021)) and we conduct
sensitivity analysis of our results to the price impact function. Figure 3 shows the amount of liquidated
assets under various regimes of the price impact functions. Clearly, the more sensitive the valuation of
assets to the sold volumes, the larger the needs to liquidate securities to restore liquidity.

Unrealised losses in HtM portfolios. The accounting of losses in securities portfolios masked
the actual vulnerabilities stemming from the securities repricing pressure in the rising interest rate
environment. However, the trigger for SVB’s bankruptcy was related to investors expectations about
growing hidden losses. From the hindsight, knowing the estimates of the unrealised losses (FRB, 2023),
we can analyse how vulnerable the balance sheet of SVB was by assuming that the unrealised losses
were to be reflected in capital and computing the implied withdrawals and liquidations in our simple
model. To achieve that, we subtracted the estimated unrealised losses from AfS and HtM portfolios of
SVB before running the simulations. Figure 4 shows that already at the the beginning of 2022 financial
conditions of SVB became conducive to bankruptcy. In Q1, SVB would stay solvent but may already
be considered illiquid and as of the subsequent periods, assuming a higher sensitivity of asset values in
fire sales, the bank could be considered illiquid and insolvent. The outcomes of the simulations indicate
that, given the mounting unrealised losses, the financial conditions of SVB would deteriorate sharply.

We can also align the vulnerabilities that picked up in 2022 with SVB’s outlook for income presented
in earnings reports. SVB was revising their net interest income upwards in Q4 2021 (30% growth year on
year), to 50% in Q1 2022 that was attracting investors. However, Q2 2022 brought a downward revision
of the net interest income to 40%, coinciding with the FED’s aggressive monetary tightening policy. The
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reversal of the projected trend and related volatility made the financial situation of SVB very uncertain
which is reflected in a sharp increase of the run risk, as measured by our model in Fig. 4. Admittedly,
supervisors did not act timely and preemptively to prevent the ultimate run to happen.

Share of insured deposits. The model allows us to test some policy interventions that may
reduce vulnerabilities in the balance sheets of banks. The most straightforward one in the case of SVB,
advocated by researchers and policy makers in the wake of SVB meltdown, was to foster diversified or
insured funding sources. We can directly test the impact of the later. To this end, we assume that
a certain fraction of the uninsured deposits of SVB would be moved from uninsured to the insured
category and, consequently, limiting the scope of the run ex ante. The Figure 5 shows results of the
simulations. They show that reducing the volume of uninsured deposits by as much as 95% can eliminate
the conditions for a run with adverse impact. However, limiting the size of uninsured funding by half,
can already limit the size of financial losses, even though solvency default might not have been avoided.
The banks’ balance sheet was not sound enough to withstand the unhedged losses confirming that the
adopted business model was flawed.

Allocation of securities to AfS and HtM porfolios. Since accounting of securities held by SVB
was blamed for the collapse of the bank we can use the model to test whether a different allocation
of securities across AfS and HtM portfolio could increase SVB’s balance sheet soundness. To this end,
we ran a simulation assuming that SVB would held more AfS securities. Practically, we reallocated a
fraction of HtM portfolio to AfS assuming that the same amount of unrealised losses be incurred. We
experimented with fractions ranging from 20% to 80%. Fig. 6 shows equilibrium withdrawal of deposits
across time and different accounting structure of securities portfolios. The main finding is the following:
the reallocation per se would not save the bank but rather delay a meltdown. In the critical period,
i.e. Q1 2022, depicted by the results of our model, holding significantly more AfS securities would allow
the bank to raise liquidity following some depositors decision to withdraw but not yet utilizing resources
locked in the HtM portfolios. Notably, this result sheds light on the importance on interest rate risk
management, including effective hedging, since the fair value depreciation reflecting market conditions is
independent of accounting standards. HtM accounting hid the losses but not mitigated them and only
a proper risk management could have been effective.

5 On the balance between HtM and AfS

To understand why banks hold HtM we should look at basic principles of banks’ asset and liability
management. Banks’ business models – at least more traditional ones of the universal banks – rely
on maturity transformation, i.e., banks invest in long-term projects financed by short-term funding.
However, investment in long-term projects may be achieved via non-marketable loans or via bonds and
equities, which are more liquid, frequently exchange-traded. However, because of liquidity needs, banks
hold bonds also to be able to quickly raise cash, and holding period of those bonds may be short. Since
these instruments are marked-to-market, they create volatility in banks’ profit and loss accounts. To
decrease the variability of income from bonds, and other securities, which are intentionally held for long-
term investment purposes (i.e., held-to-maturity) regulators introduced accounting rules that allow banks
to recognize these bonds at amortised costs. However, this designation is a commitment and whenever
banks sell even a fraction of those bonds they need to derecognize the whole HtM portfolio. It is very
penalizing and banks tend to keep some optimum level of the HtM securities, i.e., enough available for
sale securities to cover liquidity needs under almost all foreseeable scenarios. Our model can help explain
what the preferred level of HtM can be given funding risk of banks.

Specifically, consider a bank that holds A total assets and Ā := A − x − ℓ of marketable securities
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Figure 2: The figure shows equilibrium withdrawal of funding (in billion USD) from SVB for balance
sheets observed between Q1 2020 and Q4 2022 and for various calibrations of targeted leverage ratios.
For each period there is a group of bars, each of them corresponding to one leverage ratio from the set
{7.0, 7.25, 7.5, 7.75, 8.0}. Colored bars correspond to steps 1–6 of the algorithm in Prop. 3.2. Grey
and black bars indicate insolvency differentiating liquidity and illiquidity state.

that can be designated as AfS or HtM, i.e., so that Ā = s + h. Herein, implicitly, we consider the
setting in which the initial price p = 1 at the time that the bank determines the composition of its
balance sheet. However, we assume the price p of these securities fluctuates randomly (e.g., following
a lognormal distribution), which generates risks on the banking book. Such risks are evident from the
failure of SVB in which the price of its HtM securities fell on the open market causing unrealized losses.

To simplify the setting, we consider the bank to want as much of its marketable securities held to
maturity as possible, while keeping the probability that it needs to remark those assets below α ∈ (0, 1).
That is, the bank seeks to optimize

h∗ = max{h ∈ [0, Ā] | γ↓(pα) ≤ Ā− h}

= Ā−min{s ∈ [0, Ā] | γ↓(pα) ≤ s} (6)

where the dependence of the minimal liquidations on the initial price is made explicit and pα > 0 is the
α-lower quantile of the price distribution.

Proposition 5.1 (Optimal balance sheet). Assume λmax ≥ 2. Assume the linear inverse demand
function fα(γ) = pα(1− bγ) with b < 1/[(λmax−1)Ā]. The minimal AfS s∗ = min{NS,PW,FW} where

NS =

0 if LU > x or L ≤ x+ λmax−1
λmax

(Ā+ ℓ)

Ā else

PW =


pα−λmax−1

λmax
−M

bpα
if

pα−λmax−1
λmax

−M

bpα
≤ s̄ and pα ≥ λmax−1

λmax
+ b[L− x− λmax−1

λmax
(Ā+ ℓ)] +M

Ā else

12



y2
02

0q
1

y2
02

0q
2

y2
02

0q
3

y2
02

0q
4

y2
02

1q
1

y2
02

1q
2

y2
02

1q
3

y2
02

1q
4

y2
02

2q
1

y2
02

2q
2

y2
02

2q
3

y2
02

2q
4

0

5

10

15

20

25

30

35
Bi

llio
n 

US
D

1. No sales
2. Run without HtM I
3. Run without HtM II
4. Run with HtM I
5. Run with HtM II
6. Illiquid / solvent
Liquid / insolvent
Illiquid / insolvent

Figure 3: The figure shows equilibrium liquidation of securities by SVB (in billion USD) for balance sheets
observed between Q1 2020 and Q4 2022 and for various parameterisations of price impact functions. For
each period there is a group of bars, each of them corresponding to one parameter of the linear impact
function (b) from the set {0.0001, 0.0002, 0.001, 0.002}. For instance, 0.0001 corresponds to 10 bp
impact on asset prices when 10 billion USD of securities are liquidated, like in Greenwood et al. (2015).
Target leverage ratio = 7.5. Black line indicated the total volume of securities in the AfS portfolio.
Colored bars correspond to steps 1–6 of the algorithm in Prop. 3.2. Grey and black bars indicate
insolvency differentiating liquidity and illiquidity state.

where M =

√
(pα − λmax − 1

λmax
)2 − 2pαb[L− x− λmax − 1

λmax
(Ā+ ℓ)],

FW =

max{γ∗ ,
Ā+ℓ−pαγ∗(1−bγ∗)− λmax

λmax−1LI

1−pα(1−bγ∗) } if pα ≥ 2b(LU − x)

Ā else

and γ∗ =
1−

√
1−2b

LU−x

pα

b and with s̄ defined as the solution to

Lu = λmaxL− (λmax − 1)[x+ γ̄(s̄)f(γ̄(s̄)) + (s̄− γ̄(s̄))f(γ̄(s̄)) + Ā+ ℓ− s̄]

for (l̄ = λmax−1
λmax

)

γ̄(s) :=
−pα(1− b(λmax − 1)s) +

√
[ pα

λmax
(1− b(λmax − 1)s)]2 − 4pα(l̄ − 1

2 )b[(1 + pα)l̄s− (L− x− l̄(Ā+ ℓ))]

pα(λmax − 2)b
.

Proof. There are three steps of the clearing algorithm in Proposition 3.2 before HtM is re-marked: (i)
no sales; (ii) run without re-marking HtM I; and (iii) run without re-marking HtM II. To determine the
minimal AfS, we will determine the feasible AfS so that we end up in each of these cases.

(i) The no sales case are feasible if either LU ≤ x or L ≤ x + λmax−1
λmax

(Ā + ℓ). As these conditions do
not depend on the decomposition of Ā into AfS and HtM, either any balance sheet is feasible or
none is. The minimal possible value in this feasible region is, thus, given by NS.
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Figure 4: The figure shows equilibrium funding withdrawals from SVB (in billion USD) in a hypothetical
scenario of unrealised losses in AfS and HtM portfolios being realized in the value of the securities port-
folios and for balance sheets observed between Q1 2020, and Q4 2022 and for various parameterisations
of price impact functions. For each period there is a group of bars, each of them corresponding to one
parameter of the linear impact function (b) from the set {0.0001, 0.0002, 0.001, 0.002}. For instance,
0.0001 corresponds to 10 bp impact on asset prices when 10 billion USD of securities are liquidated, like
in Greenwood et al. (2015). Target leverage ratio = 7.5. Colored bars correspond to steps 1–6 of the
algorithm in Prop. 3.2. Grey and black bars indicate insolvency differentiating liquidity and illiquidity
state.

(ii) Let γ̄, s̄ be given as in the statement of the proposition. 4 Then the run without re-marking HtM
I case is feasible if and only if L − x − λmax−1

λmax
(Ā − s + ℓ) ≤ sf̄(s) (the lower bound for which is

provided within PW ) and LU ≥ λmaxL − (λmax − 1)(x + γ̄f̄(γ̄) + (s − γ̄)f(γ̄) + Ā − s + ℓ), i.e.,
s ≤ s̄. The minimal possible value in this feasible region is therefore given by PW .

(iii) Let γ∗ be such that γ∗f̄(γ∗) = LU − x, i.e., as given in the statement of the proposition (which
exists if and only if pα ≥ 2b(LU − x)). Then the run without re-marking HtM II case is feasible
if and only if s ≥ γ∗ (so that sf̄(s) ≥ LU − x) and LI ≥ λmax−1

λmax
[(s − γ∗)f(γ∗) + Ā − s + ℓ]. The

minimal possible value in this feasible region is given by FW .

A Proofs

A.1 Proof of Proposition 3.1

One readily confirms that the two mappings (2) and (3) are non-decreasing in (w, γ) ∈ [0, LU ]× [0, s+h].
As the domain of Φ defined by (2)- (3) is a complete lattice, the claim follows from Tarski’s fixed point
theorem.

4It has to be ensured that γ̄ exists and s̄ unique solution.
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Figure 5: The figure shows equilibrium funding withdrawals from SVB (in billion USD) in a hypothetical
scenario of unrealised losses in AfS and HtM portfolios being realized in the value of the securities
portfolios and ex ante policy interventions limiting the size of the uninsured deposits. Results are shown
for balance sheets observed between Q1 2020, and Q4 2022 and for various parameterisations of price
impact functions. For each period there is a group of bars, each of them corresponding to one parameter
of the reduction in the volume of uninsured deposits taken from the set {40%, 55%, 70%, 95%}. For
instance, 40% means that 40% of uninsured deposits are moved to insured deposits category. Target
leverage ratio = 7.5. Colored bars correspond to steps 1–6 of the algorithm in Prop. 3.2. Grey and black
bars indicate insolvency differentiating liquidity and illiquidity state.

A.2 Proof of Proposition 3.2

By Proposition 3.1 there exists a minimal clearing solution (w∗, γ∗) ∈ [0, LU ] × [0, s + h], provided the
bank is solvent. The left-hand side of the solvency condition (5) reads as

x+ γf̄(γ) + (s− γ)f(γ) + h+ ℓ, for γ ∈ [0, s], and

x+ γf̄(γ) + (s+ h− γ)f(γ) + ℓ, for γ ∈ (s, s+ h].

Following Remark 2.7, these are both non-increasing functions of γ on the respective domains. Moreover,
at γ = 1, there is a jump of size (f(s) − 1)h ≤ 0, since f(s) ≤ 1 by Assumption 2.2. Consequently, if
the bank was already insolvent at some level of liquidations γ, it is also insolvent for all larger values.
It therefore suffices to check for solvency at the termination of the algorithm, since the algorithm is
increasing in the value of γ∗.

By construction, we must have that either γ∗ = 0 (no sales), γ∗ ∈ (0, s] (run without re-marking
of HtM), γ∗ ∈ (s, s + h) (run with re-marking of HtM), or γ∗ = s + h (illiquidity). By studying these
case-by-case, we will be able to conclude that our clearing solution is indeed realized by one of the steps
presented in Proposition 3.1. By proceeding in increasing order with respect to the values of (γ∗, w∗),
we arrive at the minimal solution.

Step 1 (No sales). Assume γ∗ = 0. Then w∗ = Φw(0) = LU ∧ [λmaxL−(λmax−1)(x+sp+h+ℓ)]+.
This is a clearing solution if and only if w∗ ≤ x. This, in turn, holds if and only if LU ≤ x or
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Figure 6: The figure shows equilibrium funding withdrawals from SVB (in billion USD) in a hypothetical
scenario of unrealised losses in AfS and HtM portfolios being realized in the value of the securities
portfolios and ex ante different allocation of securities to AfS and HtM accounting portfolios. Results
are shown for balance sheets observed between Q1 2020, and Q4 2022 and for various parameterisations
of price impact functions. For each period there is a group of bars, each of them corresponding to
one parameter of the percentage reduction in the volume of HtM securities and allocating to the AfS
portfolio. Reduction parameters are selected from the set {20%, 40%, 60%, 80%}. For instance, 40%
means that 40% of HtM securities are moved to the AfS category. Target leverage ratio = 7.5. Colored
bars correspond to steps 1–6 of the algorithm in Prop. 3.2. Grey and black bars indicate insolvency
differentiating liquidity and illiquidity state.

λmaxL− (λmax − 1)(x+ sp+ h+ ℓ) ≤ x. The latter holds if only if

L ≤ x

λmax
+

λmax − 1

λmax
(x+ sp+ h+ ℓ) = x+

λmax − 1

λmax
[sp+ h+ ℓ].

Step 2 (Run without re-marking HtM I). Suppose γ∗ ∈ (0, s]. Then w∗ ∈ (x, LU ] with LU > x.
For this step, assume w∗ ∈ (x, LU ). Since γ∗ ∈ (0, s], we see that wew∗ = Φw(γ

∗) holds if and only if

LU ≥ λmaxL− (λmax − 1)(x+ γ∗f̄(γ∗) + (s− γ∗)f(γ∗) + h+ ℓ). (7)

Note that w∗ equals the right-hand side of (14). Moreover, γ∗ must satisfy γ∗f̄(γ∗) = w∗ − x, and it is
the unique such solution, since the left-hand side is strictly increasing. Inserting w∗ = x + γ∗f̄(γ∗) in
(14) and recalling that the right-hand side equals w∗, we obtain

w∗ = L− (1− 1

λmax
)((s− γ∗)f(γ∗) + h+ ℓ).

Thus, the liquidation γ∗ ∈ (0, s] satisfies

γ∗f̄(γ∗) + (1− 1

λmax
)(s− γ∗)f(γ∗) = L− x− (1− 1

λmax
)(h+ ℓ), (8)
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and it must be the unique solution to this equation on (0, s], since the left-hand side is strictly increasing
in γ∗ on [0, s] by Assumption 2.5 and Remark 2.7. This is possible if and only if

L− x− (1− 1

λmax
)(h+ ℓ) ∈

[
(1− 1

λmax
)sp, sf̄(s)

]
. (9)

Consequently, we have a clearing solution if and only if both (9) and (14) hold with γ∗ in (14) being the
unique solution to (8).

Step 3 (Run without re-marking HtM I). Now assume γ∗ ∈ (0, s] and w∗ = LU . Then γ∗

satisfies γ∗f̄(γ∗) = w∗ − x = LU − x. As the left-hand side is strictly increasing, we have a unique
solution which is in (0, s] if and only if LU ∈ (x, x+ sf̄(s)]. With γ∗ ≤ s, we have w∗ = Φw(γ

∗) = LU if
and only if LU ≤ λmaxL− (λmax − 1)(x+ γ∗f̄(γ∗) + (s− γ∗)f(γ∗) + h+ ℓ). Writing L = LI + LU , this
re-arranges to

LI ≥ (1− 1

λmax
)[(s− γ∗)f(γ∗) + h+ ℓ]. (10)

Consequently, (γ∗, w∗) is a clearing solution if and only if LU ∈ (x, x + sf̄(s)] and (10) holds for the
unique solution γ∗ ∈ (0, s] of γ∗f̄(γ∗) = LU − x.

Step 4 (Re-marking HtM I). Suppose γ∗ ∈ (s, s+h). Then w∗ ∈ (x, LU ]. For this step we assume
w∗ ∈ (x, LU ). We have w∗ = Φ∗

w(γ
∗) if and only if

LU ≥ λmaxL− (λmax − 1)(x+ γ∗f̄(γ∗) + (s+ h− γ∗)f(γ∗) + ℓ), (11)

and w∗ is then given by the right-hand side of (11). Noting that γ∗ must be the unique solution of
γ∗f̄(γ∗) = w∗ − x, we can insert this in (11) and solve for

w∗ = L− (1− 1

λmax
)((s+ h− γ∗)f(γ∗) + ℓ).

In turn, γ∗ ∈ (s, s+ h) must solve

γ∗f̄(γ∗) + (1− 1

λmax
)(s+ h− γ∗)f(γ∗) = L− x− (1− 1

λmax
)ℓ, (12)

and it must the unique such solution since the left-hand side is strictly increasing on [0, s + h] by
Assumption 2.5. This is feasible if and only if

L− x− (1− 1

λmax
)ℓ ∈

[
sf̄(s) + (1− 1

λmax
)hf(s), (s+ h)f̄(s+ h)

]
. (13)

In conclusion, we have a clearing solution if and only if (13) and (11) hold, when γ∗ in (11) is given by
the unique solution to (12).

Step 5 (Re-marking HtM II). Now assume γ∗ ∈ (s, s+h) and w∗ = LU . Then γ∗f̄(γ∗) = LU −x,
which is possible if and only if LU ∈ (x, x+ (s+ h)f̄(s+ h)). Moreover, we see that Φw(γ

∗) = LU holds
if and only if

LI ≥ (1− 1

λmax
)[(s+ h− γ∗)f(γ∗) + ℓ]. (14)

We thus have a clearing solution if and only if LU ∈ (x, x+ (s+ h)f̄(s+ h)) and the unique solution γ∗

to γ∗f̄(γ∗) = LU − x satisfies (14).
Step 6 (Illiquidity). Finally, assume γ∗ = s+ h. Then

w∗ = Φw(s+ h) = LU ∧ [λmaxL− (λmax − 1)(x+ (s+ h)f̄(s+ h) + ℓ)].
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This is a clearing solution if and only if w∗−x ≥ (s+h)f̄(s+h). Given the expression for w∗, this holds
if and only if either

λmaxL− (λmax − 1)(x+ (s+ h)f̄(s+ h) + ℓ) ≥ LU and LU ≥ x+ (s+ h)f̄(s+ h), or

λmaxL− (λmax − 1)(x+ (s+ h)f̄(s+ h) + ℓ) < LU and L ≥ x+ (s+ h)f̄(s+ h) + (1− 1

λmax
)ℓ,

since the last inequality is equivalent to

λmaxL− (λmax − 1)
(
x+ (s+ h)f̄(s+ h) + ℓ)

)
≥ x+ (s+ h)f̄(s+ h).

This completes the proof.

B Additional Sensitivity Analysis

Proposition 3.2 shows that there are some critical parameters of the model that change the liquidity and
solvency state of the bank. One of them is the share of uninsured deposits that may be subject to a run
risk. The other one is the uncertainty of the value of the assets held by the bank that impacts depositors’
beliefs about the pool of assets that can be used to raise cash and cover deposit withdrawals. Notably,
the market value of the balance sheet, even independent of the unrealised loss aspect, can be lower than
the book value.

As Fig. 7 shows, the level of uninsured deposits influences the liquidity and solvency state of a bank.
Moreover, a small shift in the composition of liabilities may determine whether the banks is liquid and
solvent, being able to raise cash to cover potential bank run and hold adequate level of capital to cover
even unexpected losses, or may lose solvency despite retaining capacity to satisfy immediate deposit
withdrawals. This sheds light on the importance of careful calibration of requirements regarding banks’
composition of funding sources.

We illustrated the impact of the initial valuation on the run risk in Fig. 8. It is interesting to see
changes in the initial valuation of the asset portfolios can create jumps in the vulnerability of the banks.
The impact is most visible at the end of 2022 when low valuation of securities portfolios may create
conditions for deposit runs leading to illiquidity. The state of the bank is very sensitive to the beliefs
regarding the valuation. For instance, as of Q4 2022, depending whether depositors believe 7.5% or 10%
lower valuation of assets, the bank may move from liquid state, even though requiring tapping liquidity
from HtM portfolios, to illiquidity meaning that the bank does not have enough resources to satisfy
depositors.
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