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Abstract

This paper empirically tests theories of the psychology of tail events, in particular prospect
theory. We develop a model where banks use subjective expectations and probability weight-
ing to measure market risk on their balance sheet. Then, we estimate the probability weight-
ing function derived from the asset pricing equation of the largest banks that were recapital-
ized under the Capital Purchase Program. Our findings reveal that banks demonstrate the
coexistence of over- and underweighting of tail losses. Specifically, banks tend to over-
weight small probability losses during the financial distress and underweight the same
when not exposed to insolvency risk. Before and during recapitalization, banks overweight
low probability losses and underweight high probability losses, consistent with an inverse
S-shaped probability weighting function of prospect theory. However, after the recapital-
ization, banks revert to underweighting tail events. This behavioral bias appears to be
associated with funding liquidity, prior gains and losses, market risk, investor sentiment,
default probabilities, and policy uncertainty.
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1 Introduction

Asset pricing models rely on a crucial assumption regarding how investors perceive and eval-
uate risks. Expected utility theory, a pillar of rational decision-making in uncertain environ-
ments, assumes that investors assess risks by linearly weighting probabilities. However, re-
search in behavioral economics, notably Tversky and Kahneman (1992)’s prospect theory, has
revealed that investors’ behavior substantially deviates from the assumptions of expected util-
ity. According to prospect theory, decision-makers use subjective probabilities instead of ob-
jective probabilities to guide their decisions - they overweight small probability events and
underweight high probability outcomes. As a result of probability weighting, decision-makers
may exhibit risk aversion in some situations and have risk-seeking preferences in other circum-
stances.1 This raises an important question: are probability distortions stable over time, and
what factors contribute to such behavioral bias?

This paper tests prospect theory predictions in the asset pricing model of liquidity-constrained
banks. The first question is, do large banks overweight or underweight tail losses? Second,
which factors are associated with underweighting or overweighting? To address the first ques-
tion, we estimate the probability weighting function across periods preceding, during, and
following government intervention. This allows us to focus on both constraint-binding and
non-binding phases. Notably, during the 2008 financial crisis, the Troubled Asset Relief Pro-
gram (TARP) was implemented to stabilize the US financial system. A critical component of
TARP was the Capital Purchase Program (CPP), which aimed to alleviate liquidity constraints
by injecting capital into financially distressed institutions. To address the second question, we
investigate five groups of potential factors that may contribute to probability distortions: mar-
ket risk, default probabilities, funding liquidity, investor sentiment, and policy uncertainty.

The first part of the paper integrates probability weighting into the conventional consumption-
based asset pricing model. Banks derive utility from consumption while facing capital require-
ment constraint to hold enough capital to cover expected losses. Our model specification is
further motivated by probability distortions in Yaari (1987) and Tversky and Kahneman (1992).
Similar to prospect theory, banks mentally distinguish between gains and losses associated
with investing in risky assets. Subsequently, they evaluate this assessment – the distribution
of gains and losses – to compute subjective expected losses. Within our framework, banks dis-
tort probabilities in line with prospect theory when computing expected losses. In the second
part of the paper, we estimate parameters of the probability weighting function using the asset
pricing equation and generalized method of moments.

This paper contributes to the existing literature on estimating the probability weighting
function of prospect theory. While prior studies predominantly rely on experimental settings,
they consistently find robust evidence supporting an inverse S-shaped probability weighting,
particularly in financial contexts (Abdellaoui (2000); Abdellaoui et al. (2005); Booij et al. (2010);
Etchart-Vincent (2004); Fehr-Duda et al. (2006); Gonzalez and Wu (1999); Stott (2006); Tver-

1More recently, O’Donoghue and Somerville (2018) summarize empirical evidence of alternative models of risk
attitudes to expected utility theory.
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sky and Kahneman (1992)). Among seminal contributions, Gonzalez and Wu (1999) observe a
tendency among participants to overweight small probabilities and underweight large proba-
bilities in lottery scenarios. Bruhin et al. (2010) reveal significant heterogeneity in risk-taking
behavior, with only approximately 20% of participants adhering to expected utility maximiza-
tion while the majority exhibiting nonlinear probability distortions. The potential significance
of probability weighting extends beyond laboratory settings. In financial market environment,
Kliger and Levy (2009) reveal probability weighting patterns in call option data that align with
prospect theory. Sydnor (2010) analyzes household choices regarding deductible levels for
property insurance policies and finds substantial evidence of probability distortions, particu-
larly in the overweighting of low likelihood events of having to file a claim. Barseghyan et al.
(2013) also emphasize the role of overweighting small probabilities in explaining risk aversion
in deductible home insurance choices. In contrast to existing research, this paper focuses on
the evaluation of tail events by large and systematically important financial institutions.

This paper also relates to the literature that applies probability weighting of prospect the-
ory to asset pricing. Barberis et al. (2001) explores the implications of prospect theory for stock
market anomalies, providing early evidence that prospect theory’s probability weighting can
explain various market phenomena. Building on this foundation, subsequent research by Bar-
beris and Huang (2008) extends the analysis to incorporate the effects of prospect theory on
investor behavior and market outcomes. De Giorgi and Legg (2012) further investigates the
role of probability weighting in dynamic asset pricing models, shedding light on market non-
participation puzzle and the equity premium puzzle. Baele et al. (2019) examines the impli-
cations of prospect theory for option pricing, revealing how probability weighting generate
puzzlingly low returns on both out-of-the-money put and out-of-the-money call options. Re-
cently, Barberis et al. (2019) synthesizes prospect theory’s ability to explain a wide range of
stock market anomalies, with factors like volatility, skewness, and past gains or losses affect-
ing risk assessment and equity premiums. We expand on their analysis by adding liquidity,
sentiment, policy uncertainty, and default probabilities. We focus particularly on recapitalized
banks, where financial distress is a significant concern. Our rationale for including additional
factors stems from the observation that distressed banks and market participants are more
likely to consider government intervention policies and bank illiquidity when assessing tail
risk. By exploring these factors, we aim to provide a more comprehensive understanding of
how probability distortions and equity premiums are influenced in the context of recapitalized
banks.

In summary, our findings reveal a nuanced interplay between overweighting and under-
weighting of tail events of systemic banks. Rather than observing stable weighting function, we
find a dynamic pattern characterized by concave, convex, concave-convex (inverse S-shaped),
and convex-concave (S-shaped) weighting functions across distinct periods. Prior to the 2008
financial crisis, major banks tended to underweight the likelihood of tail and highly probable
losses, resulting in a convex weighting function. During times of financial distress and amidst
the Capital Purchase Program recapitalization, banks exhibited a propensity to overweight
small and high probability losses. Combining the pre-crisis and crisis period yields a standard
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inverted S-shaped weighting function of prospect theory, implying overweighting of small and
underweighting of high probabilities. After the recapitalization, we observe S-shaped, indicat-
ing that banks underweight small probability losses and overweight highly probable losses.
These findings contribute to the existing evidence on dynamic and context-dependent proba-
bility weighting. In salience theory of Bordalo et al. (2013), investors overweight losses when
abnormal negative return realizations are salient. In contrast, when gains are salient, investors’
attention is drawn to positive market outcomes causing them to underweight losses and over-
weight gains. Additionally, our findings align with Epper and Fehr-Duda (2017), which suggest
that probability weighting varies in response to the timing of consequences and uncertainty
resolution. According to their model, decision-makers’ willingness to take risks depends on
how long they must wait and how certain they are about the outcome. When time is irrelevant,
decision-makers tend to overestimate the probability of negative rare events happening soon,
but underestimate the probability of those events happening in the distant future. However, if
the outcome is uncertain and will take time to unfold, they overestimate the chances of negative
rare events happening. On the other hand, if they know when the outcome will be revealed,
they tend to underestimate the chances of negative events. This might has implications for
systemic banks, as they need to consider whether and when tail losses and government capital
injections will materialize.

Furthermore, our findings indicate that the bank capital requirement constraint is binding
during government recapitalization but becomes relaxed afterward. This result holds only after
including Fama-French book-to-market factors. We jointly determine the probability weight-
ing function and the Lagrange multiplier associated with the capital requirement constraint
in our model. In the pre-crisis period, the Lagrange multiplier is insignificant, implying un-
constrained systemic banks. However, during recapitalization, it becomes positive and signifi-
cant, suggesting that banks were undercapitalized. Post-intervention, the Lagrange multiplier
is significant and negative, implying the relaxation of the constraint. This relaxation of the
constraint after recapitalization is associated with risk-seeking behavior over small probabil-
ity losses. That said, our results shed light on the impact of prior losses on risk preferences
among banks that underwent recapitalization following significant losses that brought them
near bankruptcy. Prior literature suggests that agents tend to become either more risk-seeking
(Andrade and Iyer (2009); Langer and Weber (2008)) or more risk-averse after a loss (Liu et al.
(2010); Shiv et al. (2005)). However, recent research indicates that investors may respond dif-
ferently to realized losses compared to paper losses. For instance, Imas (2016) show that par-
ticipants tend to take more risk after a paper loss (if the loss has not been realized), while they
take less risk after a realized loss. We propose that recapitalization encourages banks to view
realized losses as paper losses, which may lead to risk-seeking preferences.

Lastly, we find that several factors amplify overweighting before and during government
recapitalization programs, including prior losses, market volatility, beta, systematic skewness,
and market-wide investor sentiment. Conversely, interbank funding illiquidity and prior gains
can mitigate overweighting before recapitalization and amplify underweighting after recapital-
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ization.2 Interestingly, policy uncertainty and default probabilities can reduce the overweight-
ing of tail market losses before a crisis but have little effect on subsequent underweighting af-
ter recapitalization. Based on these results, understanding risk attitudes during peaceful times
versus distress periods may have implications for macroprudential regulation. To calibrate cap-
ital requirements and act as an early warning indicator of crises, regulators may estimate the
probability weighting function in the tranquil period, particularly for systemically important
institutions. This function can indicate excessive risk appetite or tail loss neglect in financial
markets and give policymakers room to anticipate downturns and prepare responses when
banks are not distressed. By estimating the probability weighting function when banks have
ample liquidity or when there is a liquidity shortage, regulators can calibrate capital buffers to
respond to aggregate liquidity indicators.

The paper proceeds as follows. Section 2 briefly reviews probability weighting and outlines
the asset pricing model with banks operating under expected loss constraint. Section 3 esti-
mates the probability weighting function of the largest banks. Section 4 investigates economic
drivers of probability distortions. Section 5 concludes.

2 Model

In this section, we briefly define probability weighting function and derive asset pricing equa-
tion from which we estimate the probability weighting function in Section 3.

2.1 Probability weighting

Most decision-making models assume that investors evaluate risk based on the expected utility
theory, which treats payoff probabilities linearly. However, the prospect theory of Tversky and
Kahneman (1992) deviates from this framework in two fundamental ways. Firstly, it consid-
ers an individual’s reference point while assessing market outcomes and payoffs as gains and
losses, leading to loss aversion. Secondly, it depicts how individuals distort objective proba-
bilities of outcomes or lotteries by overweighting small probabilities and underweighting high
probabilities. These violations of linearity in expectations can be captured through the risk
spectrum and probability weighting function, which reflect an individual’s risk attitudes and
their ability to pay attention to multiple outcomes. Figure 1(a) and (b) in this context high-
light the deviations from expected utility and linear probability weighting, where the dashed
line corresponds to the objective probability of the expected utility theory, and positive and
negative deviations indicate overweighting and underweighting.

We specify the probability weighting function of prospect theory as in Gonzalez and Wu

2Previous research has found correlations between certain factors and cross-sectional returns and equity pre-
miums. For example, high past realized returns are negatively correlated with expected stock returns (Bali et al.
(2011)). Stocks with high idiosyncratic skewness tend to have low expected returns (Boyer et al. (2010)). Addition-
ally, investor sentiment can help explain expected returns (Stambaugh and Yuan (2017)).
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Figure 1: Probability weighting functions and risk spectrum in prospect theory. Notes: The left
panel plots the probability weighting function proposed by Gonzalez and Wu (1999), W(p) =

δpγ

δpγ+(1−p)γ for various parameter values of δ and γ. The right panel plots the associated risk
spectrum w(p) = W ′(p).

(1999):

w(p) =
δγ(p(1− p))γ−1

(δpγ + (1− p)γ)2 (1)

W(p) =
δpγ

δpγ + (1− p)γ
(2)

which overweights the risk in the tails (Figure 1(b)).
The curvature of the probability weighting function intuitively reflects an individual’s ten-

dency to pay more attention to less probable outcomes. This results in the possibility effect,
which favors risk seeking for gains and risk aversion for losses. Conversely, the certainty effect
encourages risk seeking in the domain of losses and risk aversion for gains by underweight-
ing large probabilities. Gonzalez and Wu (1999) differentiate between two key aspects of the
weighting function - sensitivity and attractiveness - which govern investment behavior. Those
with linear weighting function have constant sensitivity, while those with a step function are
extremely sensitive around 0 and 1, and insensitive in between. Sensitivity is evident in proba-
bility distortions around the reference points of 0 and 1. Attractiveness determines the strength
of overweighting, with higher elevation associated with higher risk aversion in the loss do-
main.

2.2 Asset pricing under probability weighting

The model is a simplified version of Brunnermeier and Sannikov (2014), while the banks oper-
ate under an expected loss constraint. The optimization problem combines a standard expected
utility consumption-portfolio model, with a behavioral one that applies prospect theory to how
banks evaluate risk. This approach is consistent with the one proposed by Kőszegi and Rabin
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(2006) and Barberis et al. (2016) who argue that agents derive utility both from wealth levels
and realized gains and losses, and as such, formulations where agents’ decisions are deter-
mined solely by prospect theory should be avoided.

The model assumes a single consumption good and a single factor of production, with the
only type of agent being risk-averse banks. The utility of banks is determined by consumption
and a discount factor ρ

E
[∫ ∞

0
e−ρt log ctdt

]
. (3)

Banks produce final good from capital, with linear production function

yt = Akt, (4)

where A is a technology parameter. Let qt be the price of capital. Capital supply is exogenous,
and evolves over time according to Brownian motion

dkt

kt
= σdWt, (5)

The term dWt is called capital quality shock, and it captures changes in expectation about future
productivity of capital. In principle, banks can finance any process for kt by taking debt at
exogenous risk-free rate rt, such that their net worth evolves as

dnt = Aktdt + d(qtkt)− rt(qtkt − nt)dt− ctdt. (6)

The first two terms are income from production and capital gains or losses, that is change in
asset value. The second two terms are debt repayments and consumption. The price of capital
follows diffusion process

dqt

qt
= µ

q
t dt + σqdWt. (7)

Using Ito’s product rule and the evolution of capital and the price of capital we have get evo-
lution of capital gains rate

d(qtkt)

qtkt
= (µ

q
t + σσ

q
t )dt + (σ + σ

q
t )dWt. (8)

Let Xt ≡ qtkt denote the value of bank assets at time t, and Xt+τ the future value of capital
at time t + τ when the capital exposure between time t and time t + τ is kept unchanged. We
define market loss between the period t and t + τ

L(t, t + τ) ≡ Xt+τ − Xt. (9)

Since bank assets are marked to market, market gains and losses are captured by the change
of the value of capital d(qtkt). We assume that bank’s borrowing is restricted by capital con-
straint that forces bank to hold enough capital to compute subjective expected market losses
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between the period t and t + τ. To compute expected loss, we first define Value at Risk in as
the maximum market loss that can occur with probability p

P(L(t, t + τ) ≥ VaR(p)) ≤ p.

VaRt,t+τ
p is the loss over the next period of length τ which would be exceeded only with a

probability p if the current portfolio were kept unchanged. In Appendix A we present the
proof for the following propositions that compute subjective expected losses.

Proposition 1.
VaR(p) = qtkt(1− e(µ

q
t +σσ

q
t − 1

2 (σ+σ
q
t )

2)τ+Φ−1(p)(σ+σ
q
t )
√

τ)),

where Φ−1(·) is the inverse of the cumulative distribution function of the standard normal distribution.

Proposition 2. The expected loss based on probability weighting function in (2) is

qtkt

∫ 1

0
W ′(p)VaR(p)dp

= qtkt

∫ 1

0

δγ(p(1− p))γ−1

(δpγ + (1− p)γ)2 (1− e(µ
q
t +σσ

q
t − 1

2 (σ+σ
q
t )

2)τ+Φ−1(p)(σ+σ
q
t )
√

τ)dp

= qtkt

(
1− e(µ

q+σσq)τ δγ(Φ(σ + σq)(1−Φ(σ + σq)))γ−1

(δΦ(σ + σq)γ + (1−Φ(σ + σq))γ)2

)
= qtktLW ,

It is important to note that LW denotes subjective expected loss, which is governed by the
probability weighting function. The expected utility theory is recovered when banks treat prob-
abilities linearly and W(p) = p. The prospect theory enters the bank oprimization problem
through capital requirement constraint - banks need to ensure that their net worth is adequate
to cover subjective expected losses

qtktLW ≤ nt (10)

This constraint can be enforced by investors, regulators, or banks themselves, and represents
the collective perception of market losses by three agents, henceforth termed as bank’s sub-
jective expected losses. Banks choose kt and ct to maximize expected utility (3) subject to net
worth evolution (6) and the expected loss constraint (10).

Proposition 3. The bank optimization leads to the asset pricing equation

A
qt

+ µ
q
t + σσ

q
t − rt =

1
LW

(σ + σ
q
t )

2 + λqtLW , (11)

where λ is a Lagrange multiplier on the expected loss constraint (10).

The proof is in Appendix A. The Lagrange multiplier serves as an indicator to determine
whether the capital requirement constraint is binding or non-binding. Upon examining equa-
tion (11), it is evident that the equity premium banks earn is equivalent to the standard risk pre-
mium in addition to the subjective expected loss premium. A positive loss premium implies
that banks are averse to losses and require supplementary compensation for their expected
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market losses exposure. Conversely, a negative expected loss premium indicates that banks are
risk-seeking in market losses.

3 Data and methodology

3.1 Capital Purchase Program Background

In response to the 2008 market downturn, the US Treasury established the Troubled Asset Re-
lief Program (TARP) to stabilize the country’s financial system. The Capital Purchase Pro-
gram (CPP) was the largest and first program under TARP, which provided capital injections to
liquidity-constrained financial institutions. The program involved purchasing preferred stocks
and provided up to $250 billion to 707 financial institutions. Of the total funds, 81% were
distributed to 17 out of 19 banks with assets above $100 billion, while the remaining funds
were allocated to 690 out of 7,891 banks with assets below $100 billion. Other TARP programs
included the Targeted Investment Program, Systematically Significant Failing Institutions Pro-
gram, Asset Guarantee Program, and Public-Private Investment Program, which provided cap-
ital injections or guaranteed and removed troubled securities from bank balance sheets. The
primary objective of the CPP was to stabilize the financial system, while the secondary objec-
tive was to improve credit availability. The program aimed to increase credit availability to the
communities served by disparate banks of all sizes. Table 1 reposts the large banks included
in the estimation analysis in the following sections. The minimum investment in our sample
is $214 million dollars to Umpqua Holdings Corporation, the maximum of $25 billion dollars
was distributed to both Citigroup Inc and Wells Fargo & Company, amounting to the total
investment of $96.6 billion dollars to 39 banks.

3.2 Econometric procedure : estimation of the probability weighting function

The main question revolves around how systemic banks, which are susceptible to insolvency
risk, perceive market losses and distort probabilities.To answer this question, we jointly esti-
mate coefficients δ and γ of the probability weighting function and the Lagrange multiplier λ

from the asset pricing equation (12) by the general method of moments

E
[(

A
qt

+ µ
q
t + σσ

q
t − rt −

1
LW

(σ + σ
q
t )

2 − λqtLW

)
Zt

]
= 0 (12)

where Zt are instruments.
The sample consists of daily equity data of 39 banks covering the period between January

2nd, 2007, and December 31st, 2010. We estimate coefficients of probability weighting function
during four periods: before the Capital Purchase Program (January 2nd, 2007 - June 30th, 2008),
during the CPP (September 2nd - December 26th, 2008), before-during the CPP (January 2nd,
2007 - December 26th, 2008) and after the CPP (January 2nd, 2010 - December 31st, 2010). Table
2 contains the data sources and empirical counterparts related to the GMM estimation. Sum-
mary statistics in periods before, during and after the CPP for core variables and instruments
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Table 1: List of CPP recipients

Institution Amount invested Amount returned

Citigroup Inc. 25 000 32 839
Wells Fargo & Company 25 000 27 281
The PNC Financial Services Group Inc. 7 579 8 320
U.S. Bancorp 6 599 6 933
Capital One Financial Corporation 3 555 3 806
Regions Financial Corporation 3 500 4 138
SunTrust Banks, Inc. 3 500 5 448
Fifth Third Bancorp 3 408 4 043
Key Corp 2 500 2 867
Comerica Inc. 2 250 2 582
State Street Corporation 2 000 2 123
Marshall & Ilsley Corporation 1 715 1 944
Northern Trust Corporation 1 576 1 709
Zions Bancorporation 1 400 1 661
Synovus Financial Corp. 967 1 191
Popular, Inc. 935 1 220
First Horizon National Corporation 866 1 037
M&T Bank Corporation 600 718
First BanCorp 424 237
Webster Financial Corporation 400 457
City National Corporation 400 442
Fulton Financial Corporation 376 416
TCF Financial Corporation 361 378
South Financial Group, Inc. 347 146
Wilmington Trust Corporation 330 369
East West Bancorp 306 352
Sterling Financial Corporation 303 121
Susquehanna Bancshares, Inc 300 328
Citizens Republic Bancorp, Inc. 300 381
Whitney Holding Corporation 300 343
Valley National Bancorp 300 318
Flagstar Bancorp, Inc. 266 277
Cathay General Bancorp 258 329
Wintrust Financial Corporation 250 300
Private Bancorp, Inc. 243 290
SVB Financial Group 235 253
International Bancshares Corporation 216 261
Trustmark Corporation 215 236
Umpqua Holdings Corp. 214 7

Source : U.S. Department of the Treasury. Amounts in millions of U.S. Dollars.
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are provided in Table 3.

Table 2: BIGGEST BANKS DATA

Variable Empirical counterpart Source
Core Variables
A
pt

+ µq Holding period returns with dividends CRSP

σ Historical S&P volatility OptionMetrics
rt Treasury bill rate Fama-French

Data Library
σ

q
t Historical volatility OptionMetrics

qt Equity price (Bid/Ask) CRSP
Instruments
MktRF Excess return on the market, value-weight return of

all CRSP firms incorporated in the US minus the one-
month Treasury bill rate (from Ibbotson Associates)

Fama-French
Data Library

SMB Small Minus Big is the average return on the nine
small stock portfolios minus the average return on
the nine big stock portfolios

Fama-French
Data Library

HML High Minus Low is the average return on the two
value portfolios minus the average return on the two
growth portfolios

Fama-French
Data Library

RMW Robust Minus Weak is the average return on the two
robust operating profitability portfolios minus the av-
erage return on the two weak operating profitability
portfolios

Fama-French
Data Library

CMA Conservative Minus Aggressive is the average return
on the two conservative investment portfolios minus
the average return on the two aggressive investment
portfolios

Fama-French
Data Library

MoM Average return on the two high prior return portfo-
lios minus the average return on the two low prior
return portfolios

Fama-French
Data Library

BM0 Average return on portfolios formed on BE/ME
(Book equity/Market equity), firms with negative
book equity

Fama-French
Data Library

Lo30 Average return on portfolios formed on BE/ME
(Book equity/Market equity), bottom 30% firms

Fama-French
Data Library

Med40 Average return on portfolios formed on BE/ME
(Book equity/Market equity), middle 40% firms

Fama-French
Data Library

Our study employs five Fama-French risk factors as instruments for restricted GMM, namely
market (MktRF), size (small-minus-big, SMB), value (high-minus-low, HML), profitability (robust-
minus-weak, RMW), and investment (conservative-minus-aggressive, CMA) factor. Addition-
ally, we use book-to-market factors (BM0, Lo30, and Med40) and momentum factor (MoM) in-
terchangeably instead of MktRF. The literature on equity premium presents two distinct views
on the underlying economic drivers of the equity premium or excess return. The institutional
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or agency view suggests that the risk-adjusted return is driven by leverage constraints, and
risk should be measured using systematic risk (Frazzini and Pedersen (2014)). In contrast, the
behavioral view suggests that the excess return reflects behavioral effects, and risk should be
measured using idiosyncratic risk (Barberis and Huang (2008)). Given that the return of all
factors except market and momentum is consistent with the theory of leverage constraint, our
study proposes that probability distortions capture behavioral factors separate from leverage
factors.

Table 3: Data Summary : Core Variables

before CPP during CPP after CPP

Return
Mean (SD) -0.00171 (0.0258) -0.000598 (0.0814) 0.00110 (0.0321)
Median [Min, Max] -0.00148 [-0.298, 0.259] -0.00287 [-0.436, 0.578] 0.000366 [-0.523, 0.667]

Volatility
Mean (SD) 0.344 (0.227) 1.22 (0.607) 0.429(0.509)
Median [Min, Max] 0.294 [0.0240, 2.22] 1.08 [0.158, 4.58] 0.367 [0.0388, 31.7]

Price
Mean (SD) 39.0 (23.1) 23.9 (18.1) 21.4 (18.6)
Median [Min, Max] 34.1 [2.74, 125] 18.0 [0.500, 95.5] 14.8 [0.235, 94.5]

Volatility S&P 500
Mean (SD) 0.167 (0.0750) 0.650 (0.227) 0.163 (0.0815)
Median [Min, Max] 0.162 [0.0368, 0.417] 0.696 [0.179, 1.09] 0.152 [0.0266, 0.442]

Treasury Yield
Mean (SD) 0.0147 (0.00506) 0.00302 (0.00271) 0.000756 (0.000430)
Median [Min, Max] 0.0160 [0.00700, 0.0220] 0.00400 [0, 0.00700] 0.00100 [0, 0.00100]

Observations 12,188 3,013 9,249

3.3 Results

Tables from 4 to 7 present the GMM estimation of parameters of probability weighting func-
tion and the Lagrange multiplier for various combinations of five Fama-French factors as in-
struments. In addition, Figures 2(a) and 2(c) summarize the results of the baseline model and
depict probability weighting functions estimated with all five Fama-French factors as instru-
ments during four periods: before CPP, during CPP, before and during CPP, and after CPP.
The main focus is to investigate if banks consistently distort probabilities or if distortions vary
across periods. Tables report banks’ attractiveness to gambling δ and sensitivity to probabilities
γ.

The estimates for δ and γ before the CPP recapitalization are significant at 0.485 and 0.85,
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Figure 2: Estimated probability weighting functions of systemic banks. Notes: Figures plot the
probability weighting function W(p) = δpγ

δpγ+(1−p)γ for estimated parameter values of δ and γ

from column (6) in Tables 4 to 7.

respectively, whereas estimates for λ range from -0.151 to 1.52 and are insignificant. The value
of δ below 1 suggests a significant underweighting of small probability market losses. In do-
main of losses, smaller the δ < 1, the more optimistic outlook and a hopeful is the bank to avoid
losses. Conversely, larger the δ > 1, the more pessimistic outlook and a fearful of tail losses
the bank is. The underweighting hypothesis was not rejected (p-value(λ2)=0.000 for hypothe-
sis δ = 1). Furthermore, the reduced sensitivity to probability changes (p-value(λ2)=0.000 for
hypothesis γ = 1) even further supports the underweighting hypothesis. As for the rationale
for government intervention, the positive estimates of λ in Table 4 might provide evidence that
banks were experiencing difficulties in managing their liquidity. However, we cannot reject the
hypothesis that large banks were sufficiently capitalized before the government intervention
(p-value(λ2)=0.665 for hypothesis λ = 0).

According to Figure 2(a) and the estimate for δ = 2.204 in Table 5, banks overweighted tail
market losses during the government intervention. This is suggested by the elevated proba-
bility weighting function above the 45-degree line, which implies that banks were more pes-
simistic and overweighted probabilities relative to objective probabilities. Moreover, the sensi-
tivity is slightly higher as γ = 0.906 was closer to 1. When defining the CPP period from the
date of the first CPP recipient until the last date of bank recapitalization in the sample (October
26th, 2008 until January 30th, 2009), the estimated coefficients in column (7) of Table 5 shows
that elevation and curvature remains almost unchanged, with δ = 2.262 and γ = 0.911.

The combination of periods before and during the CPP gives rise to an inverse-S shape
of prospect theory, as observed in the orange line in Figure 2 (b). Banks are most responsive
around two reference points - 0 (impossibility) and 1 (certainty) - while remaining almost un-
responsive to the middle region. Surprisingly, banks’ average preferences reveal theoretically
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Table 4: GMM estimation of Kahneman-Tversky’s probability weighting function before the
CPP

The tble reports the results of restricted GMM estimation of coefficients δ and γ of probability weighting
function and the Lagrange multiplier λ the from the bank’s asset pricing equation. The instruments
considered are the five Fama-French factors : market (MktRF), size(SMB), value(HML), profitability
(RMW) and investment (CMA). Notation Y indicates if an instrument is used in estimation, while the
p-value of Hansen J statistics is provided as guidance for model selection. Corresponding Newey and
West (1994) standard errors are shown in parentheses. The sample period is from January 2nd, 2007,
through June 30th, 2008.

Asset Pricing Equation

(1) (2) (3) (4) (5) (6)

δ 0.485∗∗∗ 0.485∗∗∗ 0.484∗∗∗ 0.485∗∗∗ 0.485∗∗∗ 0.485∗∗∗

(0.002) (0.002) (0.003) (0.002) (0.002) (0.002)

γ 0.850∗∗∗ 0.850∗∗∗ 0.850∗∗∗ 0.850∗∗∗ 0.850∗∗∗ 0.850∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ 0.131 0.146 −0.151 0.152 0.120 0.122
(0.286) (0.303) (1.238) (0.328) (0.282) (0.281)

MktRF Y Y Y Y Y
SMB Y Y Y Y Y
HML Y Y Y Y Y
RMW Y Y Y Y Y
CMA Y Y Y Y Y
J-test p-value 0.89 0.95 0.99 0.92 0.84 0.98
Observations 12,188 12,188 12,188 12,188 12,188 12,188

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5: GMM estimation of Kahneman-Tversky’s probability weighting function during the
CPP

This table reports the results of restricted GMM estimation of coefficients δ and γ of probability weight-
ing function and the Lagrange multiplier λ the from the bank’s asset pricing equation. The instruments
considered are the five Fama-French factors : market (MktRF), size (SMB), value (HML), profitability
(RMW), and investment (CMA). Notation Y indicates if an instrument is used in estimation, while the
p-value of Hansen J statistics is provided as guidance for model selection. Corresponding Newey and
West (1994) standard errors are shown in parentheses. The sample period is from September 2nd, 2008,
through December 26th, 2008 in columns (1)-(6) and October 26th, 2008, through January 30th, 2009 in
column (7).

Asset Pricing Equation

(1) (2) (3) (4) (5) (6) (7)

δ 2.550∗∗∗ 2.041∗∗∗ 2.460∗∗∗ 2.196∗∗∗ 2.080∗∗∗ 2.204∗∗∗ 2.262∗∗∗

(0.022) (0.046) (0.023) (0.027) (0.009) (0.003) (0.012)

γ 0.991∗∗∗ 0.892∗∗∗ 0.784∗∗∗ 0.867∗∗∗ 0.842∗∗∗ 0.906∗∗∗ 0.911∗∗∗

(0.003) (0.015) (0.007) (0.009) (0.004) (0.000) (0.003)

λ 0.084 0.139 −0.035 0.059 −0.041 0.072 0.037
(1.804) (0.447) (0.074) (0.449) (0.068) (0.320) (0.185)

MktRF Y Y Y Y Y Y
SMB Y Y Y Y Y Y
HML Y Y Y Y Y Y
RMW Y Y Y Y Y Y
CMA Y Y Y Y Y Y
J-test p-value 0.95 0.99 0.93 0.93 0.86 0.97 0.93
Observations 3,013 3,013 3,013 3,013 3,013 3,013 2,545

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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meaningful values found in laboratory settings. Our estimates of δ and γ are 1.124 and 0.8,
respectively (Table 6, column (6)), which are similar to those found in literature that applies
prospect theory in laboratory settings. For instance, Etchart-Vincent (2004) find δ = 1.1 and
γ = 0.84 in the domain of losses, while Abdellaoui et al. (2005) reports more pessimistic re-
sponses (δ = 1.35) and similar sensitivity (γ = 0.84). In comparison to our results, Fehr-Duda
et al. (2006) explore gender-specific probability weighting in abstract and context environments
and find that participants discriminate probabilities less than financial institutions (γ = 0.57
for men and γ = 0.47 for women) and exhibit a similar degree of pessimism (δ = 1.14 for men
and δ = 1.06 for women in contextual settings and δ = 1.1 for men and δ = 1.10 for women in
abstract gamble formulations).

Table 6: GMM estimation of Kahneman-Tversky’s probability weighting function before and
during the CPP

This table reports the results of restricted GMM estimation of coefficients δ and γ of probability weight-
ing function and the Lagrange multiplier λ the from the bank’s asset pricing equation. The instruments
considered are the five Fama-French factors : market (MktRF), size (SMB), value (HML),profitability
(RMW), and investment (CMA). Notation Y indicates if an instrument is used in estimation, while the
p-value of Hansen J statistics is provided as guidance for model selection. Corresponding Newey and
West (1994) standard errors are shown in parentheses. The sample period is from January 2nd, 2007,
through December 26th, 2008.

Asset Pricing Equation

(1) (2) (3) (4) (5) (6)

δ 1.132∗∗∗ 1.168∗∗∗ 1.096∗∗∗ 1.103∗∗∗ 1.242∗∗∗ 1.124∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.003) (0.000)

γ 0.850∗∗∗ 0.938∗∗∗ 0.870∗∗∗ 0.744∗∗∗ 0.750∗∗∗ 0.800∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.004) (0.000)

λ 0.008 −0.058 0.041 0.021 −0.020 −0.033
(0.074) (0.289) (0.128) (0.034) (0.094) (0.046)

MktRF Y Y Y Y Y
SMB Y Y Y Y Y
HML Y Y Y Y Y
RMW Y Y Y Y Y
CMA Y Y Y Y Y
J-test p-value 1 0.97 0.96 0.91 0.97 0.93
Observations 16,670 16,670 16,670 16,670 16,670 16,670

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The probability weighting function takes an S-shape after the CPP, indicating an optimistic
psychological response towards the possibility of tail market losses. The estimated values of δ

and γ after recapitalization, as suggested by Table 7, are 0.907 and 1.135, respectively. γ > 1
suggests that banks pay substantial attention to changes in loss probabilities, rather than being
complacent. While most studies report an inverse-S shaped weighting function, some studies
do find a sensitivity parameter larger than one, as reported by Goeree et al. (2002); Van de
Kuilen and Wakker (2011).
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Table 7: GMM estimation of Kahneman-Tversky’s probability weighting function after the CPP

This table reports the results of restricted GMM estimation of coefficients δ and γ of probability weight-
ing function and the Lagrange multiplier λ the from the bank’s asset pricing equation. The instruments
considered are the five Fama-French factors : market (MktRF),size (SMB), value (HML),profitability
(RMW), and investment (CMA). Notation Y indicates if an instrument is used in estimation, while the
p-value of Hansen J statistics is provided as guidance for model selection. Corresponding Newey and
West (1994) standard errors are shown in parentheses. The sample period is from January 2nd, 2010,
through December 31st, 2010.

Asset Pricing Equation

(1) (2) (3) (4) (5) (6)

δ 0.874∗∗∗ 0.842∗∗∗ 0.898∗∗∗ 0.702∗∗∗ 0.832∗∗∗ 0.907∗∗∗

(0.020) (0.001) (0.007) (0.015) (0.009) (0.006)

γ 1.371∗∗∗ 1.156∗∗∗ 1.147∗∗∗ 1.258∗∗∗ 1.110∗∗∗ 1.135∗∗∗

(0.023) (0.001) (0.007) (0.011) (0.006) (0.002)

λ −0.320 −0.521 −0.203 −0.053 0.226 0.130
(0.307) (0.360) (0.252) (0.105) (0.167) (0.239)

MktRF Y Y Y Y Y
SMB Y Y Y Y Y
HML Y Y Y Y Y
RMW Y Y Y Y Y
CMA Y Y Y Y Y
J-test p-value 0.93 0.94 0.89 0.99 1 0.96
Observations 9,249 9,249 9,249 9,249 9,249 9,249

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: GMM estimation of Kahneman-Tversky’s probability weighting function with Book-
to-Market instrument

This table reports the results of restricted GMM estimation of coefficients δ and γ of probability weight-
ing function and the Lagrange multiplier λ the from the bank’s asset pricing equation. The instruments
considered are the seven Fama-French factors : size (SMB), value (HML),profitability (RMW), invest-
ment (CMA) and three book-to-market factors, BM0, Lo30 and Med40. Notation Y indicates if an instru-
ment is used in estimation, while the p-value of Hansen J statistics is provided as guidance for model
selection. Corresponding Newey and West (1994) standard errors are shown in parentheses. The sam-
ple periods are before the CPP (January 2nd, 2007, through June 30th, 2008), during the CPP (September
2nd, 2008, through December 26th, 2008), before-during the CPP (January 2nd, 2007, through December
26th, 2008) and after the CPP (January 2nd, 2010, through December 31st, 2010).

Asset Pricing Equation

before CPP before-during CPP during CPP after CPP

δ 0.539∗∗∗ 1.038∗∗∗ 2.367∗∗∗ 0.843∗∗∗

(0.001) (0.001) (0.009) (0.001)

γ 0.890∗∗∗ 0.920∗∗∗ 0.798∗∗∗ 1.156∗∗∗

(0.000) (0.000) (0.003) (0.000)

λ −0.064 0.133∗∗ 0.002 −0.614∗∗

(0.401) (0.059) (0.078) (0.290)

SMB Y Y Y Y
HML Y Y Y Y
RMW Y Y Y Y
CMA Y Y Y Y
BM0 Y
Lo30 Y Y
Med40 Y
J-test p-value 0.97 0.95 0.99 0.97
Observations 12,188 16,670 3,013 9,249

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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It is worth noting that the estimation of GMM with Lo30 suggests that banks were risk-
averse and constrained in losses before and during the crisis. The resulting value of λ = 0.133
rejects the hypothesis of unconstrained banks at a 5% level (p-value(λ2) = 0.02565 for hypoth-
esis λ = 0). On the other hand, the use of Med40 instrument indicates that banks become
unconstrained after they have been recapitalized, as λ = −0.614 < 0 (p-value(λ2) = 0.03435 for
hypothesis λ = 0). In this context, book-to-market equity emerges as a stronger predictor of
the constrainedness of systemic banks compared to the overall market return.

To summarize, the results reveal a state-dependent or time-dependent probability weight-
ing: convex (underweighting) before the CPP, concave (overweighting) during the CPP, in-
verted S-shaped before and during the CPP, and S-shaped after the CPP. The results remain
consistent when book-to-market or momentum factors are included as instruments instead of
the market factor MktRF. The findings are summarized in Table 8 and Table 11 in Appendix
B. Figure 4 in Appendix B plots the estimated probability weighting functions with book-to-
market and momentum factors, which are quantitatively similar to the results of the baseline
GMM.

3.4 Discussion

Our model assumes that banks are rational agents who maximize expected utility while as-
sessing subjective expected losses using probability weighting. However, empirical evidence
reveals nonlinear probability weighting that directly violates the expected utility. Addition-
ally, our analysis uncovers a positive Lagrange multiplier before and during government in-
tervention and a negative one post-recapitalization. This suggests risk aversion before and
risk-seeking after government intervention, contradicting EUT’s assumption of consistent risk
aversion. Moreover, our findings cast doubt on the consistency of the inverted S-curve of
prospect theory across various informational contexts, particularly in explaining the transi-
tion from overweighting to underweighting of small probability losses. Based on this evi-
dence, prospect theory remains valid in the absence of government intervention, leading us to
conclude that a state-dependent probability weighting function offers a more comprehensive
explanation for our results.

The observed shift in risk attitudes among banks following recapitalization after significant
losses may be due to prior losses. Previous research has shown that agents tend to become
either more risk-seeking (Shefrin and Statman (1985);Andrade and Iyer (2009); Langer and We-
ber (2008)) or more risk-averse (Andrade and Iyer (2009); Langer and Weber (2008);Barberis
et al. (2001); Dillenberger and Rozen (2015)) after a loss. However, recent studies have indi-
cated that investors may respond differently to realized losses than paper losses (Imas (2016)).
Recapitalization might encourage banks to perceive realized losses as paper losses. Consider
the impact of government intervention in the expected loss constraint, specifically in the case
of bank recapitalization. Recall the constraint on expected loss states that qtktLW ≤ nt with-
out government intervention. But what happens when the government steps in to recapitalize
banks? Recapitalization can occur through either increasing equity or reducing losses, with
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two channels at play: institutional and behavioral. In the institutional channel, recapitalization
increases equity without altering the reference point for losses ( qtktLW ≤ nt + G), resulting
in a reduction of the Lagrange multiplier post-recapitalization. However, the multiplier re-
mains non-negative, with 0 ≤ λG < λ. The probability weighting function should remain
constant during and after recapitalization. The behavioral channel involves a shift in the refer-
ence point, and the constraint becomes qtktLW − G ≤ nt. Recapitalization can reduce losses at
any range of the market loss distribution, leading to a shift in risk-seeking behavior and under-
weighting small probability losses. The shift is reflected in the probability weighting function,
which becomes state-dependent LW(G), and a negative Lagrange multiplier, λG < 0. These
findings have significant implications, with banks potentially underestimating their ability to
avoid losses after recapitalization and engaging in risk-seeking behavior.

Recent studies argue that context-dependent probability weighting function may indicate
state dependence, delay dependence, or shifting reference points (Fehr-Duda and Epper (2011)).
Abdellaoui et al. (2011) finds that the probability weights in the domain of gains are sensitive to
the resolution of uncertainty. Their experiment confirms the inverse S-shape for non-delayed
lotteries, which are resolved and paid out in the present versus the future. However, introduc-
ing a time delay generates the probability weighting function with more weighting of small
probability gains. Epper and Fehr-Duda (2017) propose that the way people weigh probabili-
ties depends on the timing of consequences and uncertainty resolution. Their model suggests
that individuals’ willingness to take risks is influenced by how long they have to wait and how
certain they are about the outcome. When time is not a factor, people tend to overestimate
the likelihood of rare negative events occurring soon but underestimate the probability of such
events happening in the distant future. However, if the outcome is uncertain and will take
time to unfold, individuals tend to overestimate the chances of negative rare events happen-
ing. Conversely, if they know when the outcome will be revealed, they tend to underestimate
the likelihood of negative events. According to the salience theory proposed by Bordalo et al.
(2013), shifting the reference points is another explanation for context-dependent probability
weighting. When market gains are salient, investors tend to focus their attention on positive
market outcomes, leading to the underweighting of losses and the overweighting of gains.
Conversely, investors are more likely to overweight losses when abnormal negative return re-
alizations occur. The concave weighting function may arise when market gains are salient, and
banks perceive equity to be sufficient to absorb potential losses, while the convex weighting
function may reflect banks’ belief in the inadequacy of equity buffer to cover losses.

4 Economic drivers of probability distortions

Our further investigation aims to explore why banks tend to overweight or underweight tail
losses in their decision-making and examine the economic factors that contribute to probability
distortions. We start by differentiating subjective and objective losses
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LKT − E(L) = e(µ
q+σσq)τ

1− δγ(Φ(σ + σq)(1−Φ(σ + σq)))γ−1

(δΦ(σ + σq)γ + (1−Φ(σ + σq))γ)2︸ ︷︷ ︸
Probability distortion

 . (13)

The difference between subjective and objective losses can be attributed to probability weight-
ing or market conditions. Probability distortions can be seen in Figure 3, where zero thresh-
olds indicate that subjective expectations of losses match objective losses. Banks systematically
overweight losses during the CPP, but underweight them afterwards (as shown in Figures 3(c)
and (d)). Additionally, probability distortions shifted from right to left skewness before and
after recapitalization.

Further analysis aims to identify the factors that contribute to the gap between subjective
and objective performance evaluation. To achieve this, we conduct fixed effect regressions with
variables related to uncertainty resolution, reference point, state dependence, and investor sen-
timent. It is worth noting that, except for uncertainty resolution, these variables have been
found to be predictors of excess stock returns and equity premiums in previous literature.3 The
resolution of uncertainty is especially important for systemic banks, as they need to consider
the timing and probability of tail losses and government capital injections. To proxy for policy-
related economic uncertainty and equity market uncertainty, we follow the methodology pro-
posed by Baker et al. (2016) . Specifically, we use the Index of Equity Market Uncertainty (EMU)
and the index of policy-related Economic Uncertainty (EPU), which are constructed based on
newspaper coverage and articles related to uncertainty.4 We use two types of risk-neutral de-
fault probabilities from Nagel and Purnanandam (2020) to proxy for bank-specific probability
of tail losses. The first type assumes that bank equity payoffs resemble a put option on bank
assets with limited upside potential, in contrast to the unlimited upside potential assumed by
Merton (1974)’s default probabilities where a equity payoff is a call option on assets.5 To ac-
count for reference point dependence and change from losses to gains, we include 15% tail
return realizations over the past 22 days (MAX).

State-dependent factors that affect asset returns include idiosyncratic volatility, market volatil-
ity, market beta, skewness, co-skewness, prior tail losses (historical VAR), and liquidity. To
estimate betas, we use rolling regressions of excess returns on market excess returns over 22
trading days. To mitigate the impact of outliers, we followFrazzini and Pedersen (2014) and
shrink the time series beta estimates toward the cross-sectional mean of 1 using a scaling fac-
tor of 0.6. We compute conditional skewness following Harvey and Siddique (2000) as the
covariance between the excess return of bank asset and the squared excess return on the mar-
ket. Market beta and co-skewness are obtained from rolling 22 days window regressions. To

3

4The EPU index includes terms related to monetary, fiscal, and regulatory policy, while the EMU index includes
stock market-related terms. Both indexes can be accessed at https://www.policyuncertainty.com/.

5To obtain daily frequency default probabilities from Nagel and Purnanandam (2020), we use linear interpolation
from quarterly data or disaggregate quarterly series using Chow-Lin maximum likelihood method with equity price
as the high-frequency indicator. It’s worth noting that Nagel and Purnanandam (2020)’s sample covers 37 out of 39
banks that we consider.
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Figure 3: The wedge between subjective and objective losses

measure liquidity, we use funding conditions represented by the TED spread and corporate
bond spread, as well as Amihud (2002) measure of market liquidity, which captures market
illiquidity by computing the average daily illiquidity of a security over 22 trading days.

Lastly, we examine the relationship between investor sentiment and probability distortions
using three variables. We include two mispricing factors proposed by Stambaugh and Yuan
(2017). The first factor, MGMT, includes net stock issues, composite equity issues, net oper-
ating assets, asset growth, investment to assets, and accruals, which are somewhat directly
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controllable by a firm’s management. The second factor, PERF, includes distress, O-score, mo-
mentum, gross profitability, and return on assets, which are linked to a firm’s performance and
less directly controllable by management. The third variable, betting against beta (BAB) factor
proposed by Frazzini and Pedersen (2014), proxies for the spread between underpriced and
overpriced stocks, and captures the degree of market-wide mispricing.

4.1 Results : fixed-effects regressions

The estimates for the effects of uncertainty resolution, reference point, state dependence, and
investor sentiment on probability distortions are detailed in Table 9. Additionally, Table 10
provides a summary of the influence of default probabilities on distortions. Our analysis in-
cludes six Fama-French factors as additional controls, namely market (MktRF), size (SMB),
value (HML), investment (CMA), profitability (RMW), and momentum (MoM), in all regres-
sions.

According to the VaR estimates in column (1), a 1% increase in prior tail losses results in a
0.06% increase in overweighting of small probabilities. Conversely, prior gains have a reducing
effect on overweighting. This is evidenced by the MAX coefficient in column (3), which shows
a decline of approximately 0.1% when banks experience a 1% increase in extreme positive re-
turns. Variations in idiosyncratic and systematic skewness elicit opposite effects. As skewness
is often associated with fear or hope, a rise skewness elicits hope and less overweighting. How-
ever, systematic skewness (co-skewness) positively correlates with overweighting. Similar re-
sults hold for volatilities. If bank-specific volatility increases by 1%, overweighting decreases
by 1.45%. However, if market volatility or beta increases by 1%, overweighting only rises by
0.25%. The second column of Table 9 demonstrates a negative correlation between the level of
the TED spread and corporate bond spread with overweighting. Specifically, an increase of 1%
in the interbank borrowing rate results in a decrease of approximately 0.3% in overweighting.
Similarly, tight funding conditions in the corporate bond market result in a 0.118% reduction
in overweighting. The response of banks to increasing market illiquidity is only a 0.045% de-
cline in overweighting. The TED spread is a metric used to evaluate the degree of funding
constraints and liquidity shortage in financial markets. A negative correlation in this spread
indicates that the major banks tend to decrease overweighting in response to liquidity shortage.

Column (3) indicates that the estimated coefficients for the BAB spread and mispricing fac-
tors related to banks’ management(MGMT) are positive but not statistically significant. How-
ever, performance has a positive impact on overweighting. The estimated coefficient of 0.097
is possible absorbing the distress component of the PERF factor. This implies that distressed
banks and those with a high likelihood of going bankrupt soon (O-score variable) tend to over-
weight small probabilities more.

It is important to note that default probabilities and government policy uncertainty have a
significant impact on probability distortions. The results of Table 10 indicate that a 1% increase
in default probabilities leads to a 20-24% increase in overweighting. On the other hand, high
policy uncertainty is associated with less overweighting, while increasing policy uncertainty
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Table 9: Determinants of probability distortion

The table presents the results from fixed-effects time-series regressions. The left-hand side variable is the
probability distortion. Explanatory variables include idiosyncratic skewness, market beta, prior gains
(MAX), and prior losses (VaR) in the top 15th percentile. ILLIQ is market illiquidity is computed as in
Amihud (2002). To construct conditional skewness, we follow Harvey and Siddique (2000). MGMT and
PERF are mispricing factors of Stambaugh and Yuan (2017), BAB is the betting against beta factor of
Frazzini and Pedersen (2014), and EPU and EMU are news-based Economic Policy Uncertainty Index
and Economic Market Uncertainty Index of Baker et al. (2016). All regressions include time fixed effects
and six Fama-French factors as controls, namely MktRF, SMB, HML, RMW, CMA, and MoM. Standard
errors robust to heteroskedasticity and autocorrelation are reported in parentheses. The sample periods
are before-during the CPP (January 2nd, 2007, through December 26th, 2008) and after the CPP (January
2nd, 2010, through December 31st, 2010).

LW − E(L)

before and during the CPP after the CPP
(1) (2) (3) (4) (5) (6) (7) (8)

volatility −1.457∗∗∗ 0.214∗∗∗

(0.151) (0.002)
volatility S&P 500 0.259∗ 0.076∗∗∗

(0.146) (0.008)
skewness −0.020∗∗ 0.0001

(0.010) (0.0003)
co-skewness 0.073∗∗∗ −0.001∗∗

(0.022) (0.0004)
beta 0.253∗∗∗ −0.004∗∗∗

(0.039) (0.001)
VaR 0.061∗∗∗ 0.001

(0.012) (0.0003)

TED spread −0.302∗∗∗ 0.142∗∗∗

(0.042) (0.017)
AAA-Treasury −0.118∗∗∗ −0.016∗∗∗

(0.037) (0.005)
ILLIQ −0.045∗∗∗ −0.005∗∗∗

(0.007) (0.001)

MAX −0.109∗∗∗ 0.018∗∗∗

(0.010) (0.002)
BAB 0.033 −0.011∗∗

(0.044) (0.005)
MGMT 0.051 0.010

(0.041) (0.008)
PERF 0.097∗∗∗ −0.010∗∗

(0.033) (0.005)

log(EMU) −0.136∗∗∗ 0.007∗∗∗

(0.017) (0.002)
∆log(EMU) 0.059∗∗∗ −0.005∗∗∗

(0.014) (0.002)
log(EPU) −0.224∗∗∗ −0.009∗∗

(0.027) (0.004)
∆log(EPU) 0.127∗∗∗ 0.006

(0.022) (0.005)

Observations 15,890 15,489 15,890 16,625 9,247 8,966 9,249 9,210
R2 0.585 0.216 0.212 0.157 0.933 0.084 0.112 0.015

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All standard errors are based on the heteroscedasticity-consistent standard errors of Arellano (1987).24



Table 10: Determinants of probability distortions, default probabilities

The table presents the results from fixed-effects time-series regressions. The left-hand side variable is
the probability distortion. Explanatory variables include default probabilities of Nagel and Purnanan-
dam (2020) that are either linearly interpolated from quarterly data (columns 1-2), or interpolated using
Chow-Lin maximum likelihood method with equity price as an indicator variable (columns 3-4). When
calculating default probabilities, Nagel and Purnanandam (2020) assume that bank equity payoffs re-
semble a put option (PD and PDChow), or a call option(PDMerton and PDMerton−Chow). All regressions
include time fixed effects and six Fama-French factors as controls, namely MktRF, SMB, HML, RMW,
CMA, and MoM. Standard errors robust to heteroskedasticity and autocorrelation are reported in paren-
theses. The sample periods are before-during the CPP (January 2nd, 2007, through December 26th, 2008)
and after the CPP (January 2nd, 2010, through December 31st, 2010).

LW − E(L)

before and during the CPP after the CPP
(1) (2) (3) (4) (5) (6) (7) (8)

PD −1.958∗∗∗ 0.090∗∗∗

(0.190) (0.026)

∆ PD 20.917∗∗ 6.794∗∗∗

(9.338) (0.692)

PDMerton −1.378∗∗∗ 0.021
(0.135) (0.013)

∆PDMerton 24.307∗∗∗ 4.457∗∗∗

(7.655) (0.416)

PDChow −1.837∗∗∗ 0.010
(0.180) (0.016)

∆ PDChow 1.887 0.138
(1.308) (0.198)

PDMerton−Chow −1.368∗∗∗ 0.007
(0.127) (0.007)

∆PDMerton−Chow 1.153 0.001
(1.197) (0.161)

Observations 14,623 14,623 15,625 15,625 6,204 6,204 8,708 8,708
R2 0.156 0.181 0.143 0.177 0.031 0.023 0.005 0.005

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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leads to more overweighting. 1 percent increase in policy uncertainty results in a 0.12 percent
rise in overweighting. Moreover, policy uncertainty plays a more crucial role in probability
distortions than uncertainty in equity markets. These findings suggest that monetary, fiscal,
and regulatory policy uncertainty have a significant economic impact on how major financial
institutions perceive and evaluate losses. If the government communicates its decision clearly
and is firm in its stance, this may reassure banks about government backing and reduce over-
weighting. However, if the government is reluctant to bail out banks, this lack of transparency
may push banks to respond to tail market losses by overreacting.

According to Table 9, the Ted spread, prior gains, and bank-specific and market volatility all
contribute to underweighting of small probabilities after recapitalization. The same holds true
for default probabilities, as indicated by the positive estimates in column (5)-(6) in Table 10. The
effects of other variables such as policy uncertainty or prior losses, are muted or insignificant
compared to the period after the government recapitalization program.

In summary, our findings suggest that factors including market volatility, beta, systematic
skewness, mispricing, default risk, policy and market uncertainty exacerbate the overweight-
ing of large banks before and during the recapitalization program. On the other hand, inter-
bank funding illiquidity, bank-specific volatility, and prior have a dampening effect.

5 Conclusion

The study of decision-making theories under risk has been an active field of research in behav-
ioral finance. This paper aims to test the concept of probability weighting from prospect theory
in the context of the financial market, specifically in relation to systemically important financial
institutions

The paper identifies the context-dependent probability weighting function of large banks
that were recapitalized under the Capital Purchase Program. The function shows a concave,
convex, concave-convex, and convex-concave pattern during different periods. Before recap-
italization, the largest banks tend to underweight the probability of tail losses. However,
during market turmoil and amid the CPP recapitalization, banks overweight the likelihood
of the worst possible scenario. The crisis and pre-crisis period generates an inverted S-curve
of prospect theory, while the weighting function is S-shaped following the CPP. The results
also reveal that banks are risk-averse in losses before and during government intervention and
risk-seeking afterward.

Furthermore, the paper demonstrates that market volatility, skewness, mispricing, inter-
bank funding liquidity, policy uncertainty, and default risk are the underlying mechanisms for
the overweighting and underweighting of tail events. In conclusion, the results of the study
highlight the significance of probability weighting in explaining the risk perceptions of sys-
temic financial institutions. Generalizing the results beyond large and recapitalized banks is a
promising direction for future research.
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A Proofs

PROOF OF PROPOSITION 1. Recall that we defined market losses as Xt − Xt+τ and VaR(p) as

VaR(p) = inf{L ≥ 0 : P(Xt − Xt+τ ≥ L) ≤ p} = (Qp
t,t+τ)

−,

where
Qp

t,t+τ = sup{L ∈ R : P(Xt+τ − Xt ≤ L) ≤ p}

is the quantile of the projected market gains over the horizon of length τ and x− = max{0,−x}.
Then we have
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conditionally normally distributed with zero mean and variance (σ + σ
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cumulative distribution of the standard normal distribution. Therefore, we have
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Finally, we obtain the expression which is stated in the proposition
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PROOF OF PROPOSITION 2. We use Laplace’s method to prove the expression for ELKT. In
general case, Laplace’s method determines the leading-order behavior of the integral

I(λ) =
∫ b

a
f (x)e−αg(x)dx. (14)

We assume that integral converges for α sufficiently large, that f and g are smooth enough
near to be replaced by local Taylor approximations of appropriate degree. Laplace’s method
postulates if g assumes a strict minimum over [a, b] at an interior critical point c, then integral
can be approximated by

I(α) ≈ e−αg(c) f (c)

√
2π

αg′′(c)
(15)

First let us introduce the change of variables Φ−1(p) = x. Therefore, p = Φ(x) and dp =

φ(x)dx, where φ(·) is the pdf of the standard normal distribution.
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In our case, α = −1, f (x) =
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2 , so g′′(c) = 1. Substituting these expressions in Laplace’s approxi-
mation, we obtain expression for ELKT.

PROOF OF PROPOSITION 3. Let us now solve for bank maximization problem. Banks’ Hamilton-
Jakobi-Bellman equation is

ρV(nt) = max
ct,kt

log ct +V ′(nt)[Akt + rtnt + qtkt(µ
q
t +σσ

q
t − rt)− ct]+

1
2
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q
t )

2q2
t k2

t +λ [nt − qtktLW ] .

(16)
The optimal policies for consumption and capital demand are computed from two optimality
conditions and the Lagrange multiplier λ on the expected loss constraint.

1
ct

= V ′(nt) (17)
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qt
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λ(nt − qtktLW) = 0. (19)
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In order to obtain asset pricing equation (18) we need to solve for banks’ optimal consumption
from Euler equation by using the method of matching drifts. Let χ = V ′(n) represent banks’
stochastic discount factor and let it follow Brownian motion

dχ = µχχdt + σχχdWt

By Ito’s lemma using χ = V ′(n) we have
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2
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The equality follows from the fact that the constraint is binding and when substituting for k =

n
qLW

. Using the first order condition for consumption and expression for drift and volatility of

the stochastic discount function we get the rewritten envelope condition
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A
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Therefore, the stochastic discount factor of intermediaries evolves as
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giving us the expression for the drift of the SDF

µχ = ρ− rt −
1

LW
(

A
q
+ µq + σσq − rt)− (σ + σq)

σχ

LW
. (20)

We can also rewrite the first order condition for capital presented in the main text, that is the
bank’s asset pricing equation

χ (A + q(µq + σσq − rt)) + (σ + σq)σχχq− λqLW = 0. (21)
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Then we get that banks’ stochastic discount factor which differs from households’ exactly in
the third term

µχ = ρ− rt −
λ

χ
.

The first order condition with respect to consumption is c = 1
χ . Using Ito’s lemma we obtain

the expressions for consumption growth and volatility

µc = −µχ + (σχ)2, σc = −σχ. (22)

We also know by Ito’s lemma c(n)

µcc = c′(n)[Ak + rtn + qk(µq + σσq − rt)− c] +
1
2

c′′(n)(σ + σq)2 p2k2, (23)
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Now we match consumption drifts using (23),(24),(22),(21), and (20) we get
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Guessing a linear consumption rule we get c(n) = An+ F and substituting it in matching drifts

we get c(n) = ρn. Using Euler equation ( 17), we have V ′(n) =
1

ρn
, and V ′′(n) = − 1

ρn2 .

Finally, plugging back expressions for V ′(n), V ′′(n) into asset pricing equation (18), we obtain
the asset pricing equation from the main text, which concludes the proof.

B Additional Tables and Figures
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Table 11: GMM estimation of Kahneman-Tversky’s probability weighting function with mo-
mentum instrument

This table reports the results of restricted GMM estimation of coefficients δ and γ of probability weight-
ing function and the Lagrange multiplier λ the from the bank’s asset pricing equation. The instruments
considered are the five Fama-French factors : size (SMB), value (HML),profitability (RMW), investment
(CMA) and momentum (MoM). Notation Y indicates if an instrument is used in estimation, while the
p-value of Hansen J statistics is provided as guidance for model selection. Corresponding Newey and
West (1994) standard errors are shown in parentheses. The sample periods are before the CPP (Jan-
uary 2nd, 2007, through June 30th, 2008), during the CPP (September 2nd, 2008, through December
26th, 2008), before-during the CPP (January 2nd, 2007, through December 26th, 2008) and after the CPP
(January 2nd, 2010, through December 31st, 2010).

Asset Pricing Equation

before CPP before-during CPP during CPP after CPP

δ 0.459∗∗∗ 1.138∗∗∗ 2.156∗∗∗ 0.929∗∗∗

(0.002) (0.001) (0.013) (0.001)

γ 0.944∗∗∗ 0.749∗∗∗ 0.803∗∗∗ 1.138∗∗∗

(0.001) (0.001) (0.005) (0.001)

λ −0.076 −0.010 0.143 −0.060
(0.065) (0.013) (0.116) (0.552)

SMB Y Y Y Y
HML Y Y Y Y
RMW Y Y Y Y
CMA Y Y Y Y
MoM Y Y Y Y
J-test p-value 0.92 0.95 0.98 0.92
Observations 12,188 16,670 3,013 9,249

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 4: Estimated probability weighting functions with book-to-market and momentum in-
struments. Notes: All lines plot the probability weighting function of Gonzalez and Wu (1999),
W(p) = δpγ

δpγ+(1−p)γ , for estimated parameter values of δ and γ during four periods : before,
during, before-during and after the Capital Purchase Program. The parameters from GMM
estimation are obtained using four Fama-French factors as instruments (SMB, HML, RMW,
and CMA) and MktRF (solid line), book-to-market (BM0,Lo30,or Med40) (dotted line) or MoM
(dashed line) factors as the fifth instrument.
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