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Motivation

e Heterogeneity in households’ exposure to business cycle fluctuations

® Monetary policy has distributional consequences

— Mounting empirical evidence
Doepke-Schneider (2006), Coibion et al. (2017), Clayton et al. (2018), Ampudia et al. (2018), ...

— Important lesson from growing heterogeneous-agent New Keynesian (“HANK?”) literature

e Fed increasingly taking into account “distributional considerations”

Our revised statement emphasizes that maximum employment is a broad-based and inclusive goal. This change
reflects our appreciation for the benefits of a strong labor market, particularly for many in low- and moderate-income
communities. — Jerome H. Powell, August 2020

: Implications of household heterogeneity for optimal monetary policy?
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This Paper

e Timeless Ramsey approach to jointly characterize:
1. Optimal long-run policy
2. Time consistency and targeting rules

3. Optimal stabilization policy
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This Paper

e Timeless Ramsey approach to jointly characterize:
1. Optimal long-run policy
2. Time consistency and targeting rules

3. Optimal stabilization policy

e Systematically revisit New Keynesian optimal policy consensus in HANK
Clarida-Gali-Gertler (1999), Woodford (2003, 2010), Gali (2008), Schmitt-Grohé-Uribe (2005, 2010), ...
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e Systematically revisit New Keynesian optimal policy consensus in HANK
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1. Under discretion, optimal policy trades off aggregate stabilization and redistribution

2. Redistribution motive exacerbates inflationary bias — large gains from commitment
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3. Under commitment, 0 inflation optimal long-run policy
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This Paper

e Timeless Ramsey approach to jointly characterize:
1. Optimal long-run policy
2. Time consistency and targeting rules

3. Optimal stabilization policy

e Systematically revisit New Keynesian optimal policy consensus in HANK
Clarida-Gali-Gertler (1999), Woodford (2003, 2010), Gali (2008), Schmitt-Grohé-Uribe (2005, 2010), ...

1. Under discretion, optimal policy trades off aggregate stabilization and redistribution
2. Redistribution motive exacerbates inflationary bias — large gains from commitment
3. Under commitment, 0 inflation optimal long-run policy

4. Standard inflation target now augmented by distributional considerations

5. Time-consistent monetary policy requires a novel distributional target

6. Divine Coincidence fails in presence of distributional considerations

e Extend sequence-space approach to Ramsey problems and welfare analysis

Boppart-Krusell-Mitman (2018), Auclert-Bardéczy-Rognlie-Straub (2021)

and Schaab Optimal Monetary Policy with Heterogeneous Agents



Model




Overview

Minimal departure from standard New Keynesian (“RANK”) model
1. Incomplete markets + idiosyncratic risk ~ Huggett (1993)

2. Wage rigidity Erceg et al. (2000), Auclert-Rognlie-Straub (2020)
e Continuous time, t € [0,00)

e No aggregate risk: focus on one-time, unanticipated shocks

Types of shocks: Demand (discount rate) p;, supply (TFP) A;, and cost-push e;
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Households

Preferences: Households’ private lifetime utility is

Vo(+) = maxlﬂo/ e~ 0P Uy my) dt
0 —

Instantaneous Utility Flow
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Households

Preferences: Households’ private lifetime utility is

Vo(-) = maX]EO/ e~ 0P Uy my) dt
O ;\/—/

Instantaneous Utility Flow

Budget constraint: ay = reay + zewiny + 7(z¢) — ¢4

e Households trade a bond a;, borrowing constraint: a; > a
e Idiosyncratic labor productivity z;: two-state Markov process

e Lump-sum rebate 7(z;) (= 0 in equilibrium)
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Households

Preferences: Households’ private lifetime utility is
(e} t d
V() = max]Eo/ e~ Jopsds Uy(ct, ny) dt
0 —————
Instantaneous Utility Flow
Budget constraint: ay = reay + zewiny + 7(z¢) — ¢4

e Households trade a bond a;, borrowing constraint: a; > a
e Idiosyncratic labor productivity z;: two-state Markov process

e Lump-sum rebate 7(z;) (= 0 in equilibrium)

Cross-sectional distribution: denote joint density g¢(a, z)
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Labor Markets and Production

Off-the-shelf model of nominal wage rigidity: Irccq et al. (2000), Auclert-Rognlie-Straub (2020)
e Labor rationing: households work same hours, 1; = N;

e New Keynesian wage Phillips curve:

Employment Subsidy
1
. €t €t — L ’ ’
i = pid + 5 // nt( - (14 7t") wezu'(cy) — v (nt))gt(a,z) dadz
~—
NKPC slope Desired Individual Labor
Markup Wedge: 7 (a,z)
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Labor Markets and Production

Off-the-shelf model of nominal wage rigidity: Irccq et al. (2000), Auclert-Rognlie-Straub (2020)
e Labor rationing: households work same hours, 1; = N;

e New Keynesian wage Phillips curve:

Employment Subsidy
1
. €t €t — L ’ ’
il = pd + 5 // nt( - (14 7t") wezu'(cy) — v (nt))gt(a,z) dadz
~—
NKPC slope Desired Individual Labor
Markup Wedge: 7 (a,z)

Production: representative firm produces consumption good Y; = A;N;

e Perfect competition + flexible prices: %‘ =w; = A; (wages = MRT # MRS)
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Remaining Model Details

Government:
e Fiscal authority: pays for employment subsidy with lump-sum tax

e Policy instrument: path of interest rates {i; };>¢

Market clearing: Goods: Y =C = / / ce(a,z)ge(a,z)dadz

Bonds: 0=B; = // agt(a,z)dadz

Standard equilibrium definition
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Remaining Model Details

Government:
e Fiscal authority: pays for employment subsidy with lump-sum tax

e Policy instrument: path of interest rates {i; };>¢
Market clearing: Goods: Y =C = / / ce(a,z)ge(a,z)dadz
Bonds: 0=B;= // agt(a,z)dadz
Standard equilibrium definition

Sources of suboptimality:
(1) Monopolistic competition (2) Nominal rigidity
(3) Labor rationing (4) Incomplete markets
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Planning Problem




Primal approach: planner picks among implementable competitive equilibria
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where

L= /0°°e_fofpsti5{ // wt(a,zlUt(a,z)gt(a,z)dadz +

welfare weights
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where

L— /Ooo e—fo'psds{ // wi(a,z) Up(a,z) ge(a,z) dadz +

Planner faces 5 implementability conditions:
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where

L— /Ooo e—fo'psds{ // wi(a,z) Up(a,z) ge(a,z) dadz +

micro : // [}(t(a,z)FOCt(a,z) + ¢1(a,2)HJB,(a,z) + At(a,z)KFEt(a,z)} dadz

Planner faces 5 implementability conditions: micro block

u'(ci(a,z)) = 3,Vi(a,z) FOC;(a,z)
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where

L— /Ooo e—fo'psds{ // wi(a,z) Up(a,z) ge(a,z) dadz +

micro : // [}(t(a,z)FOCt(a,z) + ¢1(a,2)HJB,(a,z) + At(a,z)KFEt(a,z)} dadz

Planner faces 5 implementability conditions: micro block

u'(ci(a,z)) = 3,Vi(a,z) FOC;(a,z)

HJB,(a,z)

p:iVi(a,z) = Us(a,z) + By {%}
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where

L— /Ooo e—fo'psds{ // wi(a,z) Up(a,z) ge(a,z) dadz +

micro : // [}(t(a,z)FOCt(a,z) + ¢1(a,2)HJB,(a,z) + At(a,z)KFEt(a,z)} dadz

Planner faces 5 implementability conditions: micro block

u'(ci(a,z)) = 3,Vi(a,z) FOC;(a,z)
ptVi(a,z) = Up(a,z) + By {%} HJB,(a,z)
%gt (a,2) = Afgi(a,2) KFE;(a,z2)
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where
L= / e_f(],psds{ // wi(a,z) Us(a,z) ge(a,z)dadz +
0
// [}(t(a,z)FOCt(a,z) + ¢1(a,2)HJB,(a,z) + At(a,z)KFEt(a,z)} dadz

macro :  + uRC; + 0;:NKPC; }dt

Planner faces 5 implementability conditions: macro block

0= // ct(a,z)gt(a,z)dadz — ANy RC;
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where

L— /Ooo e—fo'psds{ // wi(a,z) Up(a,z) ge(a,z) dadz +

// [Xt(ﬂ,Z)FOCt(tZ,Z) + ¢1(a,2)HJB,(a,z) + At(a,z)KFEt(a,z)} dadz

macro :  + uRC; + 0;:NKPC; }dt

Planner faces 5 implementability conditions: macro block
0= // ct(a,z)gt(a,z)dadz — ANy RC;

€
= pir+ |

€t

e_ ! (1+7hHA, // zu'(ct)gt(a,z) dadz — o' (Ny) [Ny NKPC;
t
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Primal approach: planner picks among implementable competitive equilibria

The Standard Primal Ramsey Problem solves: max L(gg), where
L= / e_fﬂ,psds{ // wi(a,z) Us(a,z) ge(a,z)dadz +
0
// [)(t(a,z)FOCt(a,z) + ¢1(a,2)HJB,(a,z) + At(a,Z)KFEt(a,z)} dadz

+ uRC; 4 0:NKPC; }dt

A Ramsey plan is a solution to this problem, i.e., time paths for:
® Allocations and prices: {c;(a,z), Vi(a,z), g(a,2), T, Ni}i=o0
® Policy: {it}i>0
o Multipliers: {¢+(a,z), xt(a,z), At(a,z), pt, 0 }1>0
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Policy Under Discretion




Discretion: control over policy in “present”, taking “future” (and expectations) as given
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Discretion: control over policy in “present”, taking “future” (and expectations) as given

Proposition. (Non-Linear Targeting Rule for Policy under Discretion)

// (Zu'(ct(a,z)) — U/S\t]t) )gt (a,z)dadz = Oy // au’ (c4(a,z))gt(a,z) dadz

Aggregate Labor Wedge Distributive Pecuniary Effect

Optimal policy trades off 1. aggregate stabilization (LHS) against 2. redistribution (RHS)
Novel force: interest rate policy has distributive pecuniary effect

Aggregate labor wedge < 0 at an optimum: [ [ au’(c;)g dadz = Covg, (a,1'(c;)) < 0

RANK limit: no redistribution motive, only aggregate stabilization
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Discretion: control over policy in “present”, taking “future” (and expectations) as given

Proposition. (Non-Linear Targeting Rule for Policy under Discretion)

// (Zu'(ct(a,z)) — U/S\t]t) )gt (a,z)dadz = Oy // au’ (c4(a,z))gt(a,z) dadz

Aggregate Labor Wedge Distributive Pecuniary Effect

Optimal policy trades off 1. aggregate stabilization (LHS) against 2. redistribution (RHS)
Novel force: interest rate policy has distribufive pecuniary effect

Aggregate labor wedge < 0 at an optimum: [ [ au’(c;)g dadz = Covg, (a,1'(c;)) < 0

RANK limit: no redistribution motive, only aggregate stabilization

Mechanism / intuition:
® Planner wants to lower real interest rates for redistribution

® Nominal rigidities: lower iy = lower r; = overheated economy with higher inflation
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With isoelastic preferences, u(c) = ﬁ01*7 and v(n) = Lnl*"

— 1+'7 7
1 1
B i dad i
Y, = 1, x € 1 < (1 —Qtf au’(ct(a, z))gt( z)dadz
e —11+7k [ zu'(ct(a,2))gi(a,z) dadz
Markup Distortion Redistribution
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With isoelastic preferences, u(c) = ﬁ01*7 and v(n) = Lnl*"

1 1
X / L
Y; =Y x ( et ! ) X <1 — ff;m (ct(,2))81(4,2) dadz)
u

e —11+7k [ zu'(ct(a,2))gi(a,z) dadz
Markup Distortion Redistribution

RANK: >1 =1

HANK: >1 >1

— Under discretion, dual incentive to push output Y; above natural Y; ex-post

Davila and Schaab
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With isoelastic preferences, u(c) = ﬁclf'y and v(n) = Lnl*"

1 1
bax] / L
Y, = 1, x ( €t 1 ) " <1 _Qtffzu (ct(a,z))gt(a, z) dadz>
u

e —11+7k [ zu'(ct(a,2))gi(a,z) dadz
Markup Distortion Redistribution

RANK: >1 =1

HANK: >1 >1

— Under discretion, dual incentive to push output Y; above natural Y; ex-post

Proposition. In steady state, policy under discretion leads to inflationary bias:

€ e—1
7'[;‘; = 5Assl\/vss { (1 - c (1 + TL))ASS — st CO’UgSS(a’Z) (u, u'(css(ll, Z))) :|

Markup Distortion: > 0 Redistribution: > 0

® Redistribution motive exacerbates inflationary bias: 4 x markup distortion term

® HANK: Gains from commitment even with appropriate employment subsidy

Davila and Schaab
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Timeless Ramsey Approach




Timeless Ramsey Approach

5X

Inflation

3X
Short-Run Inflationary Bias

TX o o o ————— -

Long-Run Inflationary Bias

w== = Discretion: Markups
s Discretion: Markups + Redistribution

Quarters
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Timeless Ramsey Approach

Inflation
5X -

3X
Short-Run Inflationary Bias Long-Run Inflationary Bias

=== = Discretion: Markup Distortion
s Discretion: Markups + Redistribution
s Standard Ramsey

Quarters

Step 1: optimal long-run inflation policy
e Policy under commitment converges to 0 inflation

e Standard Ramsey problem resolves inflationary bias in long run
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Timeless Ramsey Approach

Inflation
5X -

3X
Short-Run Inflationary Bias Long-Run Inflationary Bias

=== = Discretion: Markup Distortion
e Discretion: Markups + Redistribution
s Standard Ramsey

Quarters
Step 2: time consistency and targets

e We still have inflationary bias in the short run!

e Two forward-looking constraints = planner wants to make promises
= at time 0, no past promises == time inconsistency
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Timeless Ramsey Approach

Inflation
5X
3X
Short-Run Inflationary Bias Long-Run Inflationary Bias . X ) )
=== = Discretion: Markup Distortion
ms Discretion: Markups + Redistribution
s Standard Ramsey
mn Timeless Ramsey
1X o o o o T —— —— ——
0
I | . | )
0 1 2 3 4 5
Quarters

Step 2: time consistency and targets

e We still have inflationary bias in the short run!

e Two forward-looking constraints = planner wants to make promises
= at time 0, no past promises == time inconsistency

e Timeless Ramsey problem: targeting rule to make policy time consistent
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Step 2: Timeless Ramsey Problem

Definition. (Timeless Penalties) We define timeless penalties as

T(p,0) = //gb(u,z)Vo(u,z) dadz —  6nf
~~
Distributional Target Inflation Target

= Generalizes Marcet-Marimon (2019) to continuous-time heterogeneous-agent economies
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Step 2: Timeless Ramsey Problem

Definition. (Timeless Penalties) We define timeless penalties as

T(p,0) = //q)(u,z)VO(u,z) dadz —  6nf
~~
Distributional Target Inflation Target

= Generalizes Marcet-Marimon (2019) to continuous-time heterogeneous-agent economies

The Timeless Primal Ramsey Problem solves: max L (0, ¢,6), where

L™ (30.¢,0) = L(30) + T (9,0)
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Step 2: Timeless Ramsey Problem

Definition. (Timeless Penalties) We define timeless penalties as

T(p,0) = // ¢(a,2)Vo(a,z)dadz —  Onf
~—
Distributional Target Inflation Target

= Generalizes Marcet-Marimon (2019) to continuous-time heterogeneous-agent economies

The Timeless Primal Ramsey Problem solves: max L™ (go, ¢,0), where

L™ (30.¢,0) = L(30) + T (9,0)

Proposition. Policy under the Timeless Primal Ramsey Problem is time consistent
No inflationary bias in short run or long run
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Inflation Target

Proposition. (Inflation Target) Timeless penalty takes form of an inflation target:

v+
Qgs — Yss 1

—Ossty , where 0 = —
N—

~—
Linear inflation target (Walsh, 1995)

(OB

- T
A+ =710~ 1+ )Y
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Inflation Target

Proposition. (Inflation Target) Timeless penalty takes form of an inflation target:

v+
Q%s — Yss 1

(OB

—Ossty , where 0 = —
N—

- +
~— A+ =710~ 1+ )Y
Linear inflation target (Walsh, 1995)
RANK: distributional wedges collapse to QL,, 02, — 1

o If <1(14+7Ll) =1 = no markup distortion and employment efficient in steady state
€ p ploy y

® Standard result: no time inconsistency and 6ss = 0
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Inflation Target

Proposition. (Inflation Target) Timeless penalty takes form of an inflation target:

ol -y
— ¥
S+ -0 - (1YL

(OB

—Ossty , where 0 = —
~———

Linear inflation target (Walsh, 1995)

RANIK: distributional wedges collapse to QL, 02, — 1

o If <1(14+7Ll) =1 = no markup distortion and employment efficient in steady state
€ p ploy y

® Standard result: no time inconsistency and 6ss = 0

HANK:
® Distributional considerations impact inflation target

® Even with employment subsidy, 6 7# 0
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Distributional Target

Proposition. (Distributional Target) In HANK, new distributional target required:
// ¢ss(a,2)Vo(a,z)dadz
e Distributional target solves “promise-keeping Kolmogorov forward equation”:

0= AESFE‘PSS(’I/Z) + aqus(ur Z)

e Planner’s promise not to surprise-redistribute is not time consistent

o Like inflation target but for redistribution: ¢s(a,z) < 0 for the poor

s Unemployed
s Employed

1 2
Wealth
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Step 3: Optimal Stabilization Policy

Proposition. (Non-Linear Targeting Rule for Stabilization Policy)

1
Y, = ¥, x Ol £ 6,(1 - ) 502
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Step 3: Optimal Stabilization Policy

Proposition. (Non-Linear Targeting Rule for Stabilization Policy)

1
Y, =Y x S O 61 - §07 T
P T+6:(1+1)%

RANK: 0},0? -1 = Divine Coincidence if -1 (1+7t) =1

® Demand / TFPshock: 7’ =0 — 6;=0 = Yt =Y
® Cost-push shock: trade-off between inflation and output
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Step 3: Optimal Stabilization Policy

Proposition. (Non-Linear Targeting Rule for Stabilization Policy)

1
Y, =Y x 11+rLQt+9t(1_ )EfQ% o
P 1+6(1+n)%

RANK: 0},0? -1 = Divine Coincidence if -1 (1+7t) =1

® Demand / TFPshock: 7’ =0 — 6;=0 = Yt =Y
® Cost-push shock: trade-off between inflation and output

HANK: Divine coincidence generically fails

® Trade-off between inflation / output (aggregate efficiency) and distributional considerations

® Accounting for “distributional considerations” comes at cost of aggregate efficiency
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Sequence-Space Approach to Ramsey Problems

e Extend sequence-space apparatus to optimal policy and welfare analysis

Build on Auclert-Bardczy-Rognlie-Straub (2021)

e Notation: Path of policy i = {i; }+>0, shocks Z = { Ay, pt, €t }+>0, macro aggregates
X = {X;¢}+>0, and aggregate multipliers M = {6;, ji¢ }+>0

Proposition. (Sequence-Space Representation of Ramsey Plans) Given gy, initial
promises ¢ and 6, and path of shocks Z, a Ramsey plan R = (X, M, i) solves

R(X,M,i,Z)=0 — R=R(Zgo,¢,0)

Proposition. (Sequence-Space Perturbations)
dR = —-Ri' RzdZ

— Rrg and Rz are Jacobians of the Ramsey map = extend ABRS fake-news algorithm

— Timeless approach absolutely critical for validity of first-order approximation
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Demand Shock

(A) Output Gap

(B) Natural Output

(C) Demand Shock

Optimal Mone!

0.10 0.02 25
e HANK
s RANK
0.04 0.01 125
-0.02 0.00 0
0 3 6 9 12 15 3 6 9 12 15 0 3 6 9 12 15
00 (D) CPI Inflation 002 (E) Wage Inflation s (F) Optimal Interest Rate
0.00 0.00 02
-0.01 0.01 0.1
0 3 6 9 12 15 3 6 9 12 15 0 3 6 9 12 15
Quarters Quarters Quarters
Calibration: p=0.02 y=n=2 z€{0812} e=10 =100
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Conclusion

e Paper revisits New Keynesian consensus on optimal monetary policy in HANK

Discretion: novel redistribution motive exacerbates inflationary bias

o Commitment: Timeless Ramsey approach to jointly study
1. Optimal long-run policy
2. Time consistency and targeting rules — distributional target needed

3. Optimal stabilization policy

Extend sequence-space apparatus to Ramsey problems and welfare analysis
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o FOC for g(a,z) defines social lifetime value A¢(a,z) with Bellman:

dA(a,z)

pAe(a,z) = Up(a, z) + By {m

] + Ut (ct(a,z) - Atznt) + Gt%’q(a,z)
———

Individual Contribution to Individual Contribution
Aggregate Excess Demand to Inflation
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o FOC for g(a,z) defines social lifetime value A¢(a,z) with Bellman:

pA(a,z) = Ut(a,z) + Ey {%

] + Ut (ct(u,z) - Atznt) + Gt%’q(a,z)
———

Individual Contribution to Individual Contribution
Aggregate Excess Demand to Inflation

e FOC for interest rate i;:

0://( a0qAi(a,2) gt(a,z) + adgVi(a,z)e(a,z) )dudz

—_— ——
Distributive Pecuniary Effect “Distributional Penalty”
+ Spending on Externalities
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o FOC for g(a,z) defines social lifetime value A¢(a,z) with Bellman:

dAi(a,z)

pAt(a,z) = Ui(a, z) + By {m

] + Ut (ct(u,z) —Atznt) + Gt%’q(a,z)
———

Individual Contribution to Individual Contribution
Aggregate Excess Demand to Inflation

e FOC for interest rate i;:

0://( a0qAi(a,2) gt(a,z) + adgVi(a,z)e(a,z) )dudz

—_— ——
Distributive Pecuniary Effect “Distributional Penalty”
+ Spending on Externalities

e Evolution of inflation penalty:

6 =on¥+ // (a 0are(a,z) gt(a,z) + a9, Vi(a,z) <pt(a,z)) dadz

“Inflation Penalty” =0
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To characterize new inflation target = summary statistics for role of heterogeneity

Definition. (Distributional Wedges)

1 zu'(ct) zu' (ct) ¢ zu” (ct) Xt
ol = [l (G + e s Jue

02 // T ( /(Y:)) Y i//l(ll(%))gt dadz
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To characterize new inflation target = summary statistics for role of heterogeneity

Definition. (Distributional Wedges)
Marginal value
of consumption

N
1_ // ( zu'(ct) N zu' (ct) ¢ N zu” (ct) xt ) dadx
f W(Yy) W (Yy) g W) g )%

//1_ ( '(Ytt)) Y i///(/l(/c;)>gtdadz

e Consumption dispersion changes planner’s valuation of marginal $1
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To characterize new inflation target = summary statistics for role of heterogeneity

Definition. (Distributional Wedges)
Marginal value
of consumption  Promise-Keeping

W@ | wee (cr)
1 zu' (¢4 zu' (ct) ¢ zu” (ct) Xt
ol = [l (G + e s Jue

] (2

e Consumption dispersion changes planner’s valuation of marginal $1

o Planner faces distributional penalty ¢ (4, z) (encoding past promises)
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Labor Wedges

e Consumption dispersion changes planner’s valuation of marginal $1

Planner faces distributional penalty ¢;(a,z) (encoding past promises)
o Planner perceives uniform over- / under-saving: x;(a,z)
e Heterogeneity matters for distribution of labor wedges — Keynesian effect

In RANIK: Ql,t/ QZ,t —1
Aggregate efficiency planner / mandate: ¢, Qo — 1 Divila-Schanb (2021)
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Optimal Long-Run Inflation Policy

RANK: BRA = sroRA

HANK: O =oml + // (uqyt(a,z)ath(a,z) + agt(a,z)aa)\t(a,z)) dadz

Proposition. First-order condition for optimal monetary policy in HANK

0= // (u¢t(a,z)ath(u,z) + agt(a,z)aa)tt(a,z)) dadz

® Baseline HANK agrees with RANK on 0 optimal long-run inflation

® “Necessary condition” for HA to imply non-zero optimal inflation:
Distributional consequences of inflation must be partly orthogonal to nominal interest rate

® Baseline model does not have alternative motives for long-run inflation
Khan-King-Wolman (2003), Schmitt-Grohé-Uribe (2010)

== our approach applies to settings with distributional consequences of long-run inflation o
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Proposition 1. (Ramsey Plan)
a) First-order necessary conditions:

0
g: ptAt(ﬂ,Z) = M(Cf) —U(Nt) — E(ﬂ:tz) +-At/\t

1
— e+ (; 2 (14 th) ANz ()
V: 0= Afpe(a,z) + daxi(a,z)
. (a,2) = — & u'(ct) — pr — 0ai(a, 2)
PTGy | A6 (1 T ANz (o)
1 1 / 1"
N: 0= Mt — (Nt) + 19t 5 P (1 +T )AtAt —0 (Nt) —0 (Nt)Nt

+ // z¢1(a,z)9,Vi(a,z) +zgf(a,z)au)\f(a,z)> dadz
v O = om?
i: 0= // (acpt(a,z)ath(a,z) + agt(a,z)au)u(a,z)> dadz

b) Initial conditions: (1) ¥ =0 (2) ¢o(a,z)=0
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Implementability Conditions

® Primal approach: planner picks among implementable competitive equilibria

Paper also characterizes dual approach

e Find minimal set of implementability conditions, associate Lagrange multiplier
with each
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Implementability Conditions

® Primal approach: planner picks among implementable competitive equilibria

Paper also characterizes dual approach

e Find minimal set of implementability conditions, associate Lagrange multiplier

with each
Micro block: piVi(a,z) = U(a,z) + E¢ [%] ¢r(a,z)H]B,(a,z)
w'(ct(a,z)) = 3,Vi(a, 2) xt(a,2)FOC;(a,z)
%gt(a,z) = A}(FEgt(a,z) At(a,z)KFE;(a, z)
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Implementability Conditions

® Primal approach: planner picks among implementable competitive equilibria

Paper also characterizes dual approach

e Find minimal set of implementability conditions, associate Lagrange multiplier

with each
dVi(a,z

Micro block: ptVi(a,z) = U(a,z) + Ey [%] ¢t(a,z)HJB,(a,z)
u'(ci(a,z)) = 0,Vi(a,z) xt(a,z)FOC;(a, z)

d
Egt(a,z) = A}(FEgt(a,z) At(a,z)KFE;(a, z)

lock:

Macro bloc 0= A/N; — // ct(a,z)gt(a,z) dadz RC;

il = pird + % etT_fl(l L // zu'(ct)gt(a,z)dadz — o' (N;) [Ny NKPC;
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Model Benchmarks and Calibration

Today: main comparison benchmark RANIK limit
® Limit of no earnings risk: z; = z =1
® Initialize economy at go(4,z) = Dirac mass point at (4,z) = (0,2)

® Ongoing work: quantitative state-of-the-art two-asset HANK model
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RANK limit: non-linear implementability conditions

. 1 A
RA _ L (.RA _ _wRA t_ RA _
YRA = 7 (zt A pt)Yt RA-EE;
. wRA wRA € — RA, /(yRA Y\ Yy
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Model Benchmarks and Calibration

Today: main comparison benchmark RANIK limit
® Limit of no earnings risk: z; = z =1
® Initialize economy at go(a,z) = Dirac mass point at (a,z) = (0,z)

® Ongoing work: quantitative state-of-the-art two-asset HANK model

RANK limit: non-linear implementability conditions

. 1 A
RA _ L (.RA _ _wRA t_ RA _
YRA = 7 (zt A pf)Yt RA-EE;
. wRA wRA € — RA, /(yRA Y\ Yy
it = py —(5 o (1 + T YRA (YRA) — o A ) A RA-NKPC;

Calibration: p=002 y=y=2 2z€{0812} €e=10 =100

Skip today: planners in HANK and RANK agree on 0 optimal long-run inflation ©
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