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ASSET PURCHASES
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® APs in practice:

— effective in compressing returns
— narrow rather than broad
— state-contingent: 1 uncertainty & 1 distress — APs 1 effective

® APs in theory:
— Macro: Wallace neutrality <— Finance: Preferred-Habitat Traders
— many models, many details
— two key features:
P> Heterogeneity
P> Limits to Arbitrage

Q: does APs work through GE fiscal-like redistributions?

— from households to fiscal authorities?
— across households: from high MPC to low MPC?
— from unconstrained firms/banks to constrained ones?
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® Limits to Arbitrage: bounds on asset positions

We show:
® Hor LA = AP neutrality

® H and LA: APs impact the distribution of “price minus fundamental”
i.e. the wedge in Albagli, Hellwig and Tsyvinski (2021)

— initially APs | rates as it cuts states with mkt undervaluations
— too much APs 1 rates as it cuts states with mkt overvaluations
® APs effect is state-dependent as observed in practice

® Two applications:

— APs and fiscal-monetary interactions

— endogenous default

A: APs effective as it exploits narrow financial markets imperfections.
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LITERATURE

® Irrelevance results under complete info & frictionless markets
— Wallace (1981), Backus Kehoe (1989)

® Information frictions

— Mussa (1981), Jeanne Svensson (2007), Bhattarai et al. (2015), Iovino
Sergeyev (2021)

® Market segmentation
— Curdia Woodford (2011), Gertler Karadi (2015), Gabaix Maggiori
(2015), Vayanos Vila (2021)
— Chen et al. (2012), Reis (2017), Auclert (2019), Sterk Tenreyro (2018),
Cui Sterk (2021)
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Basic MODEL

High/low inflation (U.S.) or repayment/default (periph. EU) state

Continuum of risk-neutral agents i € [0, 1] maximizing
Elci|zi, Ryy] st c=bRO+(1—-b)1+7
where positions are bounded b; € [0,1] and
— R is the market price
— x; is a private signal z; = 0 + 0,&;, where & ~ N(0,1)
— y is a public signal y = 6 + o€ where e ~ N (0, 1).

Total supply of nominal and defaultable gov. debt b =S ~ UJ[0, 1]
AP rule: buy o € (0,1) of realized S [profits transfers 7].

Our Target: see how a impacts E[Rf).
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MARKET CLEARING AND MARKET SIGNAL
Agent i’s policy is:
by =1 if and only if RE[O|zi, R, y] > 1

and b; = 0 otherwise.
Monotone threshold strategies: hold bonds iff z; > Z(R, «)

Bond market clearing

o (TRY) =0 ms

T

net supply
private demand [ b;di b—b.p
P(z;>Z(R,a))
Solving for the cutoff signal
z2:=2Z(6,S,a)

F(R,0) =0 — 0,9 (S(1 — )

market/price signal < marginal agent’s signal
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E[0ly, 2] /Gfe\yz 0 y,z)do

A publicly-evaluated price such that RE[0|y, z] = 1 obtains as

1

R =— .
E0]y, 2]

The average bond returns obtain as

E[R'6] = E mE[ﬂy,z]
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MARKET PRICES AND AVERAGE BOND RETURNS

The market evaluates the inflation-default realization according to

E[elm = Z,y,Z} = /ef@\X,Y,Z(e ‘ r=2zY, Z)d@

The market clearing price obtains as

1
© Blflr = zy,2]

R
The average market bond returns obtain as

1

which generically DOES NOT necessarily equal one!
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CONCLUSIONS

A non-neutral asset price mechanism where APs
— APs changes the conditional distribution of market wedges

We capture two essential features of many applied models:

— (belief) heterogeneity
— limits to individual arbitrage

APs larger impact with larger losses, uncertainty or info heterogeneity

Many possible applications (stay tuned...)

— fiscal-monetary interactions and APs of defaultable debt
— endogenous govt default
— monetary policy with sticky prices
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Thanks for your attention!
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® then for bey > 0, a bj (bey) = bj — bep exists so that
c= b} (bep) RO+ (1 — b} (bep))1 4+ 7 = by RO + (1 — b})1
and (1)-(2) is satisfied at R.

e — R does not move, §2; does not move even if R € ;.
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Extension:
APs and Fiscal-Monetary Interactions
(sketch)
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With fiscal dominance:

1 R

i.e inflation risk is endogeneous to default risk through AP exposure.

— It obtains as
1 l1—«

T~ 1-aR6

a non-linear function of R.

With monetary dominance instead

1
—=1.
II
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Gross inflation rate II
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FiscAL vs MONETARY DOMINANCE
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AVERAGE REAL RATES

Blhizial

== monetary dominance
1.03J\ = fiscal dominance
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