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Abstract
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Since the financial crisis of 2008-09, central counterparties have assumed a major role in clear-

ing over-the-counter derivatives (BCBS and IOSCO (2015)). Under central clearing, parties to a

derivatives contract enter into two matched contracts with the central counterparty (CCP) that

offset one another. There are many advantages to this arrangement: it facilitates greater trans-

parency and standardization of contracts, there is greater potential for the netting of positions

(Duffie and Zhu (2011)), and intermediation chains are shortened, which in principle can reduce

contagion (Evanoff et al. (2006); Cont and Kokholm (2014)). A significant disadvantage is that cen-

tral clearing concentrates risk in a few critical counterparties whose default could seriously disrupt

financial markets.

It is therefore crucial to understand how well-protected CCPs are against sudden shocks that

might cause multiple members to default on their payments or cause severe disruption to clearing

operations. Although historically such events have been rare, there have been some close calls. For

example, on September 10, 2018, Nasdaq Clearing nearly failed due to the inability of one member

to meet margin calls on a very large position in electricity futures contracts. Due to a sudden

change in circumstances, the one-day variation margin owed on these contracts greatly exceeded

the member’s initial margin. This forced the CCP to liquidate the member’s positions and to call

on its guarantee fund to pay the counterparties to these contracts.

In this paper, we introduce a novel concept for measuring the degree of stress on a CCP and

show how to estimate it using publicly available data. Specifically, we define a CCP’s stress index

on a given day to be the total margin calls divided by the amount of prefunded resources available

to pay them (initial margin, paid-in capital, and guarantee fund). If this ratio is greater than 1,

the CCP does not have sufficient funds to meet all payment obligations from pre-funded resources

in case none of the margin calls are met. We call such an event a guarantee fund (GF) breach. The

concept of the stress index is therefore similar in spirit to that of liquidity coverage ratio, which

compares a firm’s liquid resources to its payment obligations over a given period of time, assuming

that no incoming payments are realized. We propose a framework for empirically estimating the

probability of a GF breach for CCPs operating in different geographical regions and specializing in

different asset classes.

In the last section of the paper, we consider an alternative measure of CCP safety, namely

the probability of default as estimated by the CCP’s own members. These estimates are provided

2



quarterly to the Federal Reserve as part of the annual Comprehensive Capital Analysis and Review

(CCAR). Although this information is confidential, we are able to provide the members’ estimated

probabilities in aggregate form (by subgroups of CCPs). Taken together, the two approaches provide

alternative ways of assessing the relative safety of CCPs in different jurisdictions and specializing in

different markets. It turns out that, under both measures the largest European CCPs, as a group,

appear to be less exposed to default risk than their counterparts in North America and Asia-Pacific.

1 CCP Default Waterfall Structure

We begin by briefly recalling the layers of protection that CCPs employ to guard against defaults

by their members.1 These multiple layers constitute the CCP’s default waterfall. Although the

detailed rules governing default waterfalls vary somewhat, their overall structures are similar and

follow standard industry guidelines (ISDA (2013), ISDA (2015)). The stages of a typical default

waterfall are depicted in Figure 1.

Most stages of the default waterfall are funded in advance by contributions from members and

are available independently of any shocks that may subsequently arise. However, the final stage –

members assessments – is called upon only if the prior pre-funded stages prove to be inadequate

to meet members’ defaults. The usefulness of this power is somewhat problematic, because a crisis

could threaten the CCP’s solvency in a very short time frame (e.g., one day), so that assessments

could be difficult to carry out in a timely manner; moreover, the assessment power is useless against

members who are already in default. For this reason we shall omit the assessment stage from our

analysis and assume that the guarantee fund is the last line of defense.2

The first layer of protection against member default is the initial margin (IM) that the members

post with the CCP. These funds are held in a segregated escrow account for each member and its

clients, and can only be applied to the payment shortfalls of the account holder. The standards and

factors for setting IM vary somewhat among CCPs, though they typically employ at minimum a

Value-at-Risk (VaR) measure, such as 99.5 percent, in conjunction with a specified margin period

of risk – usually two or five days. The distribution of variation margins (VM) payments used to

1See Cox and Steigerwald (2017) for an informative overview of CCP risk management structures.
2Other papers on CCP risk assessment make a similar assumption; see for example Murphy and Nahai-Williamson

(2014).
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Figure 1: Stages of CCP Default Waterfall
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Note: The chart depicts the series of resources and mechanisms in the waterfall which will be accessed if previous
ones are insufficient to cover total default losses in the event of a clearing member (M). The solid arrows depict the
most common set of waterfall resource contingencies. A defaulting clearing member’s obligation is first covered by
their initial margin (IM). If the member’s IM is insufficient to cover its obligations, the resources of the following
stages will be used.
Source: Authors’ creation.

determine the VaR is estimated from a look-back window of the member’s previous VM payments

over several prior years, adjusted for the current size and composition of the member’s portfolio. Our

assessment of the empirical frequency of IM breaches over the period July 2015 - March 2020, which

includes a very significant tail event (the COVID 19-induced crisis in March 2020) suggests that

the majority of CCPs do meet a standard in excess of 99.5 percent. As we shall see in Section 2, the

frequency of IM breaches increased markedly during the COVID 19-induced crisis in March 2020,

indicating that there is a substantial correlation between members’ IM breach probabilities. Other

research has documented the same phenomenon due to crowded positions in members’ portfolios

(Jones and Pérignon (2013); Menkveld (2015), (2017); Menkveld and Vuillemey (2020)).

The central question that we address in this paper is how much the initial margin plus paid-in
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capital and guarantee fund offer as a buffer against potential member defaults, when the probability

of multiple member defaults is not known. In other words, how likely is it that aggregate IM

breaches are larger than the CCP’s paid-in capital and guarantee fund put together? We call this

the GF breach probability, and its complement is the comprehensive coverage probability.

This standard is different, and potentially more stringent, than the so-called ‘Cover 2 rule.’

Under Cover 2, the CCP’s guarantee fund is supposed to be capable of absorbing the simultaneous

default of the two largest exceedances under ‘extreme but plausible market conditions.’3 There

are several drawbacks to this approach. First, there is no good reason why we should consider the

simultaneous default of just two members. Why not three, four, or five? Indeed, the more severe

the financial shock, and the more members the CCP has, the more likely it is that a given number

of members will default on their payments simultaneously.4 Second, the Cover 2 rule is typically

applied under ‘extreme but plausible market conditions’ that rely on a CCP’s internal model of

stress, rather than on externally verifiable assumptions. What is missing is the equivalent of a VaR

standard that allows an empirical assessment of potential risk across different CCPs.

As we shall see, there is now sufficiently detailed time series data on CCPs to be able to

estimate the probability distribution of margin calls and the likelihood of GF breaches empirically.

This allows one to estimate the probability of covering any given percentage of payment defaults,

not just the default of two members.

2 Estimating the Likelihood of Initial Margin Breaches

In this section and the next, we formally define the concepts of IM breach and GF breach, then

show how to estimate them given the limitations of the publicly available data. Fix some CCP and

let i designate the account of a member firm or a client that is sponsored by a member. Let IMit

be the initial margin posted by member i at the end of trading day t. Let the random variable

VMit represent the net variation margin that will be owed by i to the CCP on day t; if the CCP

owes member i on day t we let VMit = 0. The random variable [IMit - IMit−1] is the top-up in IM

3Principle 4 of the Bank for International Settlements and International Organization of Securities Commissions
(2012) Principles for Financial Market Infrastructures address this definition, though it leaves room for interpretation
on what is to be included under an extreme but plausible stress scenario for the assessment of pre-funded resources.

4Default correlation can arise through common exogenous shocks as well as network spillover effects, which can
increase the probability and severity of multiple defaults by members (Ghamami et al. (2020); Paddrik et al. (2020);
Paddrik and Young (2021)).
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demanded by the CCP on day t for account i. Thus the total margin call (MC)5 payment of i on

day t is

MCit = VMit + [IMit − IMit−1]. (1)

We say that account i incurs an IM breach on day t if MCit > IMit−1. If the margin call is not

met, the member will be declared in default and its positions liquidated, which will typically take

several days. The CCP uses the member’s IM on deposit to cover the unpaid VM plus the cost

of sale, which will be higher the more volatile are current market conditions. We shall view the

margin top-up as a provision reflecting these increased costs. Thus, if there is an initial margin

breach the total expected loss incurred by the CCP will be the amount of the breach, that is, MCit

- IMit−1.

The publicly available data on global CCPs come from CPSS-IOSCO Principles for Financial

Market Infrastructure’s Public Quantitative Disclosures (PQD). The data does not provide the

amounts VMit and IMit for individual members on particular days, but it does report the number

of times over the approximately 63 trading days in a given quarter that member accounts incur IM

breaches. Averaged over the number of member accounts and the number of trading days we can

therefore estimate the daily probability with which a typical account suffered an IM breach.

Suppose that the daily probability of not suffering a breach is p (which can be interpreted as a

one-day VaR). Then the probability that the average account incurs at least one breach per quarter

is 1−p63. Table 1 shows the quarterly IM breach probabilities, and corresponding daily VaR levels,

for the whole sample of CCPs as well as for three geographical subgroups: Asia-Pacific, Europe,

and North America. Note that all groups exhibit an average daily VaR in excess of 99.5 percent.6

Table 2 compares IM breach probabilities over the 18 periods 2015 Q3-2019 Q4 with the breach

probabilities in 2020 Q1, which was an unusually stressed quarter. Note that for European and

North American CCPs the probability of IM breaches increased more than three-fold in this quarter

as compared to the previous period. For example, about 8.9 percent of the North American accounts

5Coupon payments on a specified settlement day are included indirectly because they are reflected in changes
in VM from the prior day. We do not include changes in the contributions to the guarantee fund, as they are not
reported our data.

6Similarly, Capponi et al. (2020) analyze individual portfolio level data for ICE Clear Credit and find that initial
margin breaches are rare.
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Table 1: Quarterly IM Breach Probabilities of CCPs

All Asia-Pacific Europe North America

Quarterly Account IM Breach
12.46 12.66 12.89 10.15

Probability 2015 Q3 - 2020 Q1 (%)
Corresponding Daily VaR (%) 99.79 99.78 99.78 99.83

CCP Sample 77 26 41 10

Source: CCPView Clarus Financial Technology; authors’ analysis.

suffered at least one IM breach per quarter during the period 2015 Q3 through 2019 Q4, whereas 27

percent of the accounts suffered a breach in the March 2020 quarter. This highlights the fact that

breaches tend to be correlated due to exogenous financial shocks that hit many member accounts

simultaneously.

Table 2: Quarterly IM Breach Probabilities for the March 2020 vs. Previous Quarters’ Averages

All Asia-Pacific Europe North America

Quarterly Account IM Breach
8.23 12.22 5.55 8.88

Probability 2015 Q3 - 2019 Q4 (%)
Quarterly Account IM Breach

20.25 15.81 21.79 27.07
Probability 2020 Q1 (%)

CCP Sample 77 26 41 10

Source: CCPView Clarus Financial Technology; authors’ analysis.

3 Estimating the Likelihood of Guarantee Fund Breaches

Fix a CCP and let GFt be the amount in the guarantee fund plus the paid-in CCP capital on

day t. The stress index on day t is

St =

∑
MCit

GFt−1 +
∑

i min(MCit, IMit−1)
(2)

where i ranges over the members of the CCP. The CCP incurs a GF breach on day t if the sum of

the IM breaches exceeds the guarantee fund, that is,

∑
i

[MCit − IMit−1]
+ > GFt−1. (3)

As noted earlier, a breach is not the same as a default. The CCP is under severe stress if there
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is a GF breach, but it does not actually default unless a sufficient number of members default on

their payments when the GF breach occurs.7 The left-hand side of Equation (3) is an estimate of

how much the CCP would have to make up (in payments owed to members) if all the positions

were liquidated and the members’ IM were seized. If this exceeds the remaining amount of funded

resources, then we say that there is a GF breach.

The stress index is a measure of the liquid pre-funded reserves available to pay members in

the event of a default. In this sense it is similar to the concept of the liquidity coverage ratio.

The greater the index value, the more stress is placed on the guarantee fund to meet potential

payment obligations. In particular, if the index exceeds one, the GF will be insufficient to meet the

obligations to the members in full (in case of complete default), and the amounts owed to members

will be reduced pro rata (a procedure known as Variation Margin Gains Haircutting).

The probability of a GF breach is given by the expression

βt = P

[∑
i

[MCit − IMit−1]
+ > GFt−1

]
. (4)

The PQD data do not provide information about the amount of MC owed by each member or

the amount by which MC exceeds the member’s IM on any given day. Thus we cannot estimate

the probability of a GF breach directly as given by expression (4). Nevertheless, we can exploit the

fact that the data include the aggregate daily VM owed by members and their clients (averaged

over each trading day in a quarter), as well as the maximum aggregate VM owed by members and

clients on some day during the quarter. By aggregate VM owed we mean the total VM summed

over all firms who owe money on net to the CCP on a given day.8 Let

VMt =
∑
i

VMit, (5)

VMmax = max
t

VMt. (6)

The PQD data also report the total amount of IM posted on an average day during the quarter:

7In times of severe stress the CCP may also experience operational difficulties that prevent payments from being
made to members in a timely fashion.

8Due to the CCP’s matched book, the net amount owed to the CCP summed over all firms is zero. The
vulnerability of the CCP to delinquent payments is the sum over all firms that owe the CCP on net.
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IMavg =

∑
i

∑
t IMit

T
, (7)

where T is the number of trading days in the quarter. In addition, the data give the maximum

amount of IM top-up, IMTmax, that members must post on any given day during the quarter:

IMTmax = max
t

[∑
i

[IMit − IMit−1]

]+
. (8)

Note that IM top-ups are assessed on both the buy and sell side of any contract, so on average

half of the top-up will be assessed against those members that owe VM to the CCP. We shall

therefore assume that the maximum payment owed to the CCP on any given day during the

quarter is

MCmax = VMmax + IMTmax/2.9 (9)

We now describe our framework for estimating GF breach probabilities given the data limita-

tions. The true GF breach probability on a given day t is defined as in (3). Note that we can

bound this value from below as follows:

β−t = P

(∑
i∈St

MCit −
∑
i∈St

IMit−1 > GFt−1

)
where St = {i ∈ N : MCit > 0} . (10)

Here
∑

i∈StIMit−1 is the amount of initial margin held in accounts that owe the CCP on day

t. To the extent that MCit is positive but less than IMi,t−1, β
−
t underestimates the true breach

probability βt.

Each realization of MCt =
∑

i∈St MCit represents a one-day change in the value of the positions

in St plus calls for additional IM. A standard assumption is that one-day gains and losses in the

value of each set of positions are more or less symmetrically distributed about zero. Note that

this assumption is consistent with correlated as well as independently distributed changes in value.

Therefore, due to the CCP’s matched book, the set N - St owes the CCP an amount VMt with

9This is an approximation because we do not know whether the maximum top-up occurred on the same day as
the maximum VM payment. Given CCP risk practices, however, we do know that intra-day top-ups are demanded
on days with unusually high volatility, so this approximation is probably close to being correct.
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about the same probability that St owes the same amount VMt to the CCP. It follows that the

expected amount of initial margin associated with the set of accounts that owe the CCP on any

given day is approximately one-half of the total margin.10 This leads to the estimate

β−t ≈ P (MCt > IMt−1/2 + GFt−1) .
11 (11)

Given the data limitations, we do not know the values of the variables in Equation (11) on

particular days t. Nevertheless, we can make a rough estimate of the GF breach probability as

follows. Fix some CCP and a particular quarter (which we omit from the notation). Let IMavg be

the average initial margin held by the CCP over the previous quarter.12 Similarly, let GFavg be the

average size of the guarantee fund during the previous quarter and let MCmax be the maximum

MC owed on some day during the quarter. We then obtain the following estimated lower bound on

the GF breach probability

β∗ = P (MCmax > IMavg/2 + GFavg) . (12)

Similarly we can estimate a lower bound on the maximum stress index during the quarter by

the expression

MCmax

IMavg/2 + GFavg . (13)

All of the variables on the right-hand side of Equations (12) and (13) are reported for each CCP

in the public data set. An alternative way of writing expression (12) is to divide through by IMavg

and let r = GFavg/IMavg. We then obtain the expression

β∗ = P

(
MCmax

IMavg > 1/2 + r

)
. (14)

10There are situations where the IM posted is asymmetric with respect to the Buy and Sell positions, degree of
concentration, and degree of liquidity. It is not clear, however, that these asymmetries lead to more than half the IM
being held against the aggregate VM due on any given day.

11In fact this expression underestimates β−
t , because the tail of the Pareto distribution is convex, so by Jensen’s

inequality the expected tail probability is greater than the tail probability of the expectation.
12Some of the initial margin may be held in non-cash assets, but the initial margin reported in the data is its

estimated cash value.
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Equation (14) implies that each dollar of GF is twice as efficient as each dollar of IM in protecting

the CCP against default, that is, the mutualization factor is at least two (Murphy (2017)). In fact

expression (14) underestimates the comparative advantage of GF because we approximated the

GF breach probability in expression (10) by ignoring the extent to which MCit may be less than

IMit−1 for some of the members who owe MC to the CCP on day t. If we let σ be the expected

proportion of members’ IM that is dormant (i.e., in excess of their margin calls) on any given day,

then σ ≥ 0.5, because on average half the members do not owe any VM to the CCP and their IM

top-ups (if any) will typically be less than the amount of IM they already posted. For example,

suppose that on a given day half the accounts owe money to the CCP, and of those, half owe more

than they posted in IM, while the other half owe very little. Then three-quarters of the IM is

dormant, that is σ = 0.75. Thus, we can bound the GF breach probability by the expression

P(MCmax/IMavg > 1− σ + r), where σ ≥ 0.5, (15)

and the corresponding mutualization factor is 1/(1− σ).

The PQD data do not provide enough information to estimate σ. In what follows we shall make

the conservative assumption that σ = 0.5, and estimate the right-hand side of Equation (12) by

fitting a distribution to the quarterly realizations of the random variable

X =
MCmax

IMavg/2 + GFavg . (16)

X is a conservative estimate of the maximum level of stress experienced on some day during a

given quarter. If the data allowed it, we would estimate expression (16) for each CCP separately.

We only have 19 quarters of data, however, and some CCPs do not report in all quarters. Thus,

for a given CCP, we do not have enough data to estimate the distribution of X (let alone the tail of

the distribution) with much accuracy. Instead, we shall pool the data and treat the realizations of

X as if they came from a single CCP. Later we shall refine the analysis by considering subgroups of

similar CCPs defined by size and geographical location. For the pooled data we find a very good

fit is achieved with a Frechet distribution,
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F(x) = exp –
s

(x−m)α
, (17)

where m is the location parameter, s1/α is the scale parameter, and α is the shape parameter (see

Figure 2).

Figure 2: Frechet Distribution fitted to Stress Index Realizations X

(a) Fitted CDF (b) P-P plot

Note: Frechet distribution fitted to the empirical distribution of X over all CCPs that provide data for at least 10
out of the 19 quarters 2015 Q3 - 2020 Q1. Here s = 0.3119, α= 3.0873, and m = -0.1837.
Source: CCPView Clarus Financial Technology; authors’ analysis.

We claim that the right tail of a Frechet distribution is very close to the tail of a Pareto

distribution. Indeed, suppose that x is sufficiently large that the Frechet tail probability p is small,

say

p = 1− e−s/(x−m)α < 0.1. (18)

Note that ln(1− p) is very close to −p when 0 < p < 0.1. It follows that p ≈ s/(x−m)α, that

is, the tail of the Frechet is approximately Pareto distributed with the same parameters.

In what follows we shall fit a Pareto distribution to the tail of the empirical distribution (instead

of fitting a Frechet to the whole distribution), since it is the far right tail that is relevant for our

analysis of GF breach probabilities. Specifically, we shall fit a Pareto distribution P(X > x) =
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1−s/xα to the observed empirical distribution of X.13 The shape parameter α reflects the variance

in MC payments relative to funded resources IM/2 + GF. For a given value of s, larger values of α

lead to lower variance and hence to lower breach probabilities.14

Let F(x) be the empirical cumulative distribution function of X over all quarters in which the

relevant variables are reported. In our sample we omit any CCPs that report less than ten quarters.

We then estimate the parameters of the Pareto distribution from the linear regression

ln(1− F(x)) = −α lnx+ b+ e, (19)

where b = ln s and e is the error term which is assumed to be zero in expectation. The resulting

estimate of F(x) is

F(x) = 1− s

xα
, (20)

and our estimated lower bound on the GF breach probability is β∗ = 1− F(1) = s.

4 Breach Probabilities by Geographic Region and Size

We now apply this estimation methodology to CCPs that are grouped by size and geographical

location. We include only those CCPs that report at least ten quarters of data over the period

2015 Q3 through 2020 Q1. Within each geographical group, we consider the ten largest CCPs as

measured by total IM held. We omit the smaller CCPs from the analysis because their reported

numbers tend to be quite erratic, and are not as important from a systemic risk perspective.15

Table 3 gives the empirical and model-estimated breach probabilities for the various subgroups.

Note that the regression model defined in Equation (19) yields a very high R-squared for each

subgroup. Figure 3 shows the model-estimated probability distribution of the stress index for each

of the three regions. For each value of the index x in the range 0.4 - 3.0 the graph shows the

13If we fit a distribution of form P(X > x) = s/(x − m)α with a location parameter m > 0 we find that the
resulting fit is not significantly better than if m = 0.

14Andersen and Dickinson (2018) also estimate margin payments are Pareto distributed following from the empir-
ical work done in Arnsdorf (2012).

15The Asia-Pacific group includes Japan, Singapore, Hong Kong, Australia and Russia. The group of North
American CCPs does not include the largest one, CME, for which much of the data is missing in the public reports.
If the CME is more conservatively managed than the average North American CCP, the estimated probabilities of
GF breach in Tables 3 and 4 may be on the high side for this group.
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probability that x is exceeded in a randomly drawn quarter. Note that the tails are very elongated,

especially for the North American and Asia-Pacific CCPs. This suggests that extreme levels of

stress can occur with non-negligible probability. Note also that the stress distribution for European

CCPs is markedly lower than for the other two groups. This suggests that European CCPs may,

on average, be safer than their counterparts in the other regions. This finding is consistent with

another measure of CCP safety that we shall discuss in Section 6.

Table 3: Estimated GF Breach Probabilities Per CCP in Each Region

All Asia-Pacific Europe North America

Empirical Quarterly Frequency (%) 0.61 0.63 0.00 1.71
Estimated Quarterly Frequency (%) 0.81 0.92 0.12 1.71

Model Parameters 0.0081
x2.4900

0.0092
x2.4536

0.0012
x3.9676

0.0171
x1.9527

R2 0.9930 0.9367 0.9744 0.9833

Quarters Sample 455 164 174 117
CCP Sample 27 10 10 7

Source: CCPView Clarus Financial Technology; authors’ analysis.

Figure 3: Modelled Probability Distribution of the Stress Index by Region

Source: CCPView Clarus Financial Technology; authors’ analysis.

Not surprisingly, GF breaches tend to occur in bunches during periods of severe financial stress.

This phenomenon can be illustrated by comparing the estimated breach frequencies in the relatively

normal period 2015-2019 with the first quarter of 2020. Table 4 shows that GF breach frequencies

increased dramatically in the first quarter of 2020. To be specific, our estimates suggest that two

out of the seven largest CCPs in North America (28.57 percent) suffered a GF breach on at least

one day during the March 2020 quarter. During the preceding 18 quarters, by contrast, there were
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no GF breaches. These null results are not inconsistent with the model estimates. Consider, for

example, the North American model estimated from the full sample of 7 CCPs and 19 quarters.

Assuming independent realizations, the probability of no GF breaches in the first 18 quarters is

(1−0.0171)7∗18 = 0.114. The corresponding probabilities for Asia-Pacific and Europe are 0.189 and

0.806 respectively. The probabilities of no GF breach will be higher if the realizations are positively

correlated. Thus the null outcomes in the quarters prior to 2020 Q1 are not inconsistent with the

model-estimated probabilities.

Table 4: Estimated GF Breaches in 2020 Q1 vs. Prior Quarters

All Asia-Pacific Europe North America

Estimated Number of GF Breaches
2015 Q3 - 2019 Q4: 0 0 0 0

2020 Q1: 3 1 0 2
Estimated Quarterly Frequency Per CCP (%)

Model w/o 2020 Q1: 0.24 0.36 0.08 0.39
Model w/ 2020 Q1: 0.81 0.92 0.12 1.71

Quarters Sample 455 164 174 117
CCP Sample 27 10 10 7

Note: Empirical and model-estimated quarterly GF breach frequencies in the first quarter of 2020 compared to the
average quarterly GF breach frequencies over the 18 prior quarters of top 10 CCPs by region.
Source: CCPView Clarus Financial Technology; authors’ analysis.

5 Comprehensive Versus Partial Coverage

The GF breach probability measures the potential vulnerability of a CCP to default, not the

probability of default per se. Unlike Cover 2, for example, it is not predicated on the simultaneous

default of a particular number of members; it holds for the default of any subset of members.

Clearly this concept is more demanding than Cover 2: for a given level of initial margin, there is a

higher probability that a given quantity of guarantee fund will be sufficient to cover the default of

just two members as opposed to default by all of the members. In this section, we show how the

concept can be modified to accommodate any desired level of partial coverage and we show how

demanding different levels of coverage are. We also show that there is a simple way to evaluate the

tradeoff between the level of coverage and the amount in the guarantee fund.

First, let us estimate how much guarantee fund a CCP needs to meet a specified probability of
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protection against GF breaches. If we fix the ratio r = GF/IM, we can approximate the probability

of a GF breach by a function of form

β∗(r) = 1− s

(1 + 2r)α
, (21)

for some constant s and scale factor α. Given some desired level of protection β∗ against GF

breaches, such as β∗ = 0.10, 0.05 or 0.01, we can solve for the required ratio r as a function of β∗:

r(β∗) =
(s/β∗)

1
α − 1

2
(22)

For North American CCPs the current annual level of β∗ is approximately 0.065, the current

ratio of GF to IM is about 0.37, and α = 1.95. The corresponding scale factor is s = 0.191.16 This

results in the function

r(β∗) = 0.5

[
0.191

β∗

]0.513
− 0.5. (23)

We can view expression (23) as a rough measure of the risk-reward trade-off in sizing the GF.

For a given level of IM, higher r means that more GF must be held, which is costly; the benefit is

the decreased probability β∗ that a GF breach will occur.

Another way of thinking about the trade-off is to estimate the amount of GF that would be

needed to achieve a given amount of partial coverage with a specified probability, similar to a VaR.

Suppose, for example, that we want to know how likely it is that some proportion λ ∈ [0, 1] of

the MC payments would be covered by the GF in case some of the members default. The partial

coverage breach probability can be bounded by the following variant of Equation (14)

β∗(λ, r) = P
(

MC/IM > 0.5 +
r

λ

)
=

s

(0.5 + r/λ)α
. (24)

Thus we see that there is a linear relationship between r and λ: if we wish to cover only half of

the payment defaults with some probability β∗, then we need only half as much guarantee fund. The

trade-off between more coverage (λ) and more risk (β∗) is illustrated in Figure 4 for r = 0.3. In the

16This differs from the scale factor in Table 3 because we have annualized the breach probability and have assumed
a specific value of r for purposes of illustration.
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example figure, the CCP can cover a default of half the MC (λ = 0.5) with probability 1−β∗ = 95.9

percent, whereas it can cover the default of the entire amount (λ = 1) with probability 1−β∗ = 92.4

percent.

Figure 4: Trade-off between Annualized Breach (β∗) Probability and Coverage (α = 1.95, s =
0.191, r = 0.3)

Source: CCPView Clarus Financial Technology; authors’ analysis.

The concept of partial coverage is similar in spirit to that of Cover 2, but it is more general.

With sufficiently granular data we could compute the equivalent amount of partial coverage that is

afforded under the Cover 2 standard for individual CCPs, but this is not possible with the public

data. However, for each CCP the data does report the amount of IM posted by the top five members

(and their clients) as a proportion φ of the total IM in each quarter. These proportions range from

10 to 80 percent with a median of 50 percent. Suppose that the (random) amount of MC owed

by a member on a given day is proportional to its size as measured by its IM. Suppose also that

the probability is fifty-fifty that any given member owes the CCP or is owed by the CCP on a

given day. Then the proportion of MC owed by the two members with the largest exceedances on

a given day can be approximated by λ = 0.8φ.17 Thus for the median CCP the equivalent amount

of partial coverage afforded by Cover 2 is approximately λ = 0.4. It follows from the preceding

discussion that comprehensive coverage (λ = 1) requires about 1/0.4 = 2.5 times as much GF per

dollar of IM to achieve the same level of protection.

Another way of studying the trade-off between full and partial coverage is to compare the level

17On average, the top two exceedances will be realized by two of the top five members, who represent (2/5)(φ/2) =
0.8φ of the total IM posted by members who owe the CCP.
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of protection in the two cases. Let P(λ, α, r) denote the probability of protecting against a loss of

λ for any given parameters α and r. From Equation (24) it follows that for some scalar s,

P(λ, α, r) = 1− s

(0.5 + r/λ)α
. (25)

Hence the level of protection against a total loss (relative to the level of protection against a

partial loss) can be expressed as follows:

P(1, α, r) = 1− (1− P(λ, α, r))

[
0.5 + r/λ

0.5 + r

]α
(26)

This relationship is illustrated in Table 5, which shows how the VaR for full coverage varies

with α and r when the VaR for 40 percent protection is set at 99 percent. Note that full coverage

is achieved at quite a high level, even though it is a more demanding standard. This has to do with

the heavy-tailed nature of the MC distribution, together with the fact that most CCPs are fairly

highly concentrated in a few large members.

Table 5: Comprehensive coverage VaR when 40% coverage VaR is 99%.

α
2 3 4

0.3 97.5 96.2 94.0
r 0.4 97.2 95.4 92.3

0.5 96.9 94.6 90.6

Source: CCPView Clarus Financial Technology; authors’ analysis.

6 CCP Guarantee Fund Breach versus Default

The preceding sections have laid out a framework for assessing the ability of a CCP to with-

stand payment defaults by some or all of its members. This approach provides a useful tool for

comparing the adequacy of CCP waterfall resources across a wide range of markets and geograph-

ical jurisdictions. Although high levels of stress may be associated with elevated probabilities of

default, the approach we have described does not provide a measure of default probability per se.

Indeed, a CCP can default for a variety of reasons including i) a breakdown in clearing operations;

ii) cyberattacks, and iii) inability to pay due to defaults by members that owe the CCP (World
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Federation of Exchanges (2020)). Our measure of stress is related only to the last of these three

factors.

In this section we consider an alternative measure of CCP safety that is based on estimates

of CCP default by the members themselves. The Federal Reserve collects quarterly counterparty

risk estimates from each U.S. globally systemic important bank (GSIB), as part of the annual

Comprehensive Capital Analysis and Review. Although we do not know how each GSIB conducts its

estimates, we do know that they exhibit a significant amount of agreement for any given CCP, and

they vary from quarter to quarter depending on financial market conditions. Thus, it appears that

the members’ default estimates are not ad hoc, but are based on some form of risk modelling. These

estimates are provided by GSIBs for a wide range of CCPs in different markets and jurisdictions,

so they are very useful as a comparative metric.

Figure 5 shows the average estimate of CCP default probability in each quarter for the top

ten CCPs in each of the three geographical groups. These probabilities are obtained as follows.

In a given quarter each GSIB member of a given CCP estimates a 5-year CDS spread on that

CCP. We convert this to an annual default probability of the CCP and take the average over the

CCP’s members. The default probability for each group in a given quarter is the average over the

CCPs in that group. Note that the estimated default probabilities are quite stable over the period

2016-2019, but jump up sharply during the first quarter of 2020. This suggests that the members’

estimates do take into account current market conditions. Moreover, the members’ estimates are

reasonably consistent with one another: the ratio of the standard deviation to the mean estimate

is less than 0.5 for the CCPs in each of the three groups (see Table 6).

Figure 5 shows that members consistently estimate European CCPs as being somewhat less

prone to default than the other two groups. Our results on stress are broadly consistent with this

comparison (see Table 3). However, Table 3 also suggests that, as a group, North American CCPs

tend to be more prone to stress than Asia-Pacific CCPs, whereas the member estimates suggest

that the latter are more prone to default. Thus, there is no one-to-one correspondence between GF

breach probabilities and default probabilities. This is hardly surprising given that stress is only

one of several factors that enter into estimates of CCP default.
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Figure 5: U.S. GSIBs Estimates of Annual Default Probabilities of the Top 10 CCPs by Region

Note: Each line represents the average default probability estimate by each CCAR reporter across the top ten CCPs
of each region matched against the top ten largest CCPs in the public quarterly data sample.
Source: Federal Reserve Y14 Q Schedule L.

Table 6: Annual Default Probabilities Statistics.

All Asia-Pacific Europe North America

Default Probability: Mean (%) 2.47 3.12 2.53 1.34
Default Probability: Std Dev (%) 1.91 1.73 2.27 1.10
Member Coefficient of Variation: 0.4678 0.4691 0.4638 0.4690

Quarter Sample 1042 465 286 291
CCP Sample 71 31 20 20

Default Probability of Top 10: Mean (%) 1.26 1.70 0.88 1.19
Default Probability of Top 5: Mean (%) 1.25 1.79 0.79 1.18

Note: Annual default probabilities as estimated by CCP members, averaged over the 15 quarters from 2016 Q2
- 2020 Q1 and averaged over the CCPs in each group. The standard deviation (Std Dev) refers to the standard
deviation of the mean estimate over all quarters for each given subgroup of CCPs. The member coefficient of
variation is a normalized standard deviation of member estimates in cases where more than one member provided
an estimate for a given CCP.
Source: Federal Reserve Y14 Q Schedule L; authors’ analysis.

7 Conclusion

The sizing of a CCP’s waterfall determines its ability to fulfill its payment obligations under

stress. The two main components of the waterfall are the initial margin posted against individual

members’ positions and the guarantee fund, which covers joint losses over and above the initial

margin. There are well-established standards for setting the level of initial margin (BCBS and

IOSCO (2015)): with probability at least 99.5 percent a member’s IM should be able to cover its
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same-day variation margin obligation to the CCP. Unfortunately, no comparable standard exists

for the sizing of the guarantee fund. As noted earlier, the Cover 2 rule offers no clear VaR standard

for violation probabilities, and it is very sensitive to the number and size distribution of the CCP’s

membership.

In this paper, we have argued that the probability of a GF breach would be a clearer and more

appropriate measure of a CCP’s risk exposure. The measure can be used to set the appropriate

level of a CCP’s guarantee fund by specifying a VaR that should not be exceeded, either empirically

or under stress scenarios specified by the regulators. Alternatively, it can be used as a metric of

risk exposure that complements other approaches, such as Cover 2, and that can be estimated from

public data across a wide variety of CCPs.A very useful addition to the public disclosures would be

to have each CCP report, for each quarter, the maximum amount of payments owed to the CCP

in excess of IM held against these payments, relative to the total amount of pre-funded resources.

Although our estimation methodology is restricted by the limitations of the data, it nevertheless

provides a compact formulation that is easy to implement and allows one to study the trade-off

between initial margin, guarantee fund size, and probability of a breach. Access to more complete

data over a longer time horizon would allow the estimation of stress levels and GF breach probabil-

ities for individual CCPs, whereas here we have been forced to pool the outcomes into subgroups

of related CCPs. We conjecture that an individual-level analysis will show qualitatively similar

results, namely, a heavy-tailed distribution of MC payments and a significant degree of correlation

among MC payments by individual members. These results could be compared with members’

confidential estimates of the default probabilities of individual CCPs. One could then study the

relationship between default probability, breach probability, level of guarantee fund, nature of the

membership, and various other explanatory variables. We leave such a study to future work.
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