Incorporating Diagnostic Expectations into the New Keynesian Framework

Jean-Paul L'Huillier Sanjay R. Singh Donghoon Yoo

Bank of Finland - CEPR Joint Conference September 11th, 2021

Introduction

- What are Diagnostic Expectations (DE)?
 - "Representativeness heuristic" (Kahneman & Tversky)
 - ► Tendency to exaggerate how representative a small sample is
 - Advantages: Microfounded & tractable; realistic & portable
- ▶ DE can be productively integrated into the NK framework How do we show this?

First: Start off with technical contribution: solution method

Then:

- A) Analytically, address 4 key issues
 - 1. Amplification
 - 2. Supply shocks
 - 3. Fiscal policy
 - 4. Overreaction of expectations
- B) Empirically
 - ▶ Show DE improve the fit of medium-scale models

Diagnostic Expectations

Consider the process

$$x_t = \rho_x x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

► Diagnostic pdf is defined as

$$f_t^{\theta}(x_{t+1}) = \underbrace{f(x_{t+1}|G_t)}_{true\ pdf} \cdot \underbrace{\left[\frac{f(x_{t+1}|G_t)}{f(x_{t+1}|-G_t)}\right]^{\theta}}_{distortion} \cdot C, \quad \theta > 0$$

- Information sets:
 - $ightharpoonup G_t$: current state t
 - ► $-G_t$: reference state, here t-1. (Follow Bordalo, Gennaioli & Shleifer (2018))

 θ : degree of diagnosticity

More on Information Sets

Notation: \check{x}_t is the realization of x_t

- ▶ G_t : current state t. $\Rightarrow G_t = \{x_t = \check{x}_t\}$
- ▶ $-G_t$: reference state, here t-1. $\Rightarrow -G_t = \{x_t = \rho_x \check{x}_{t-1}\}$
- ► The "two minds" of the diagnostic agent One mind is inattentive

Formula for Univariate Case and Example

Diagnostic expectation is:

$$\mathbb{E}_{t}^{\theta}[x_{t+1}] = \mathbb{E}_{t}[x_{t+1}] + \theta(\mathbb{E}_{t}[x_{t+1}] - \mathbb{E}_{t-1}[x_{t+1}])$$

(Bordalo, Gennaioli & Shleifer (2018), henceforth BGS)

▶ We have that:

$$\mathbb{E}_t[x_{t+1}] = \rho_x \check{\mathsf{x}}_t$$
 and $\mathbb{E}_{t-1}[x_{t+1}] = \rho_x^2 \check{\mathsf{x}}_{t-1}$

► So:

$$\mathbb{E}_{t}^{\theta}[\mathbf{x}_{t+1}] = \rho_{\mathsf{x}} \check{\mathbf{x}}_{t} + \theta(\rho_{\mathsf{x}} \check{\mathbf{x}}_{t} - \rho_{\mathsf{x}}^{2} \check{\mathbf{x}}_{t-1}) = \rho_{\mathsf{x}} \check{\mathbf{x}}_{t} + \theta \rho_{\mathsf{x}} \check{\boldsymbol{\varepsilon}}_{t}$$

⇒ extrapolation

General Model

Exogenous process

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{v}_t$$

Recursive model:

$$\mathbb{E}_t^{\theta}[\mathsf{F}\mathsf{y}_{t+1}+\mathsf{G}_1\mathsf{y}_t+\mathsf{M}\mathsf{x}_{t+1}+\mathsf{N}_1\mathsf{x}_t]+\mathsf{G}_2\mathsf{y}_t+\mathsf{H}\mathsf{y}_{t-1}+\mathsf{N}_2\mathsf{x}_t=0$$

- **Question:** How to compute the equilibrium $\mathbb{E}_t^{\theta}[\mathbf{F}\mathbf{y}_{t+1} + \ldots]$?
 - 1. Equilibrium \mathbf{y}_t ?
 - 2. Combinations of future and contemporaneous vars?

Combinations of Future and Contemporaneous Variables

Predetermined variables cannot be treated as constants

► Consider: $y_t = \rho_y y_{t-1} + \eta_t$ and $\mathbb{E}_t^{\theta}[x_{t+1} + y_t]$

Remark:
$$\mathbb{E}_t^{\theta}[x_{t+1} + y_t] \neq \mathbb{E}_t^{\theta}[x_{t+1}] + y_t$$

Intuition: DE generate "behavioral inattentiveness" One mind of the agent is inattentive

$$(-G_t = \{x_t =
ho_x \check{\mathbf{x}}_{t-1}; y_t =
ho_y \check{\mathbf{y}}_{t-1}\}$$
 and so $\check{\eta}_t \notin -G_t)$

- Can nevertheless reestablish a strong form of additivity
 - This result delivers RE Representation
 - ▶ But notice: model needs to be loglinearized from scratch

Example: Loglinear Approximation of Euler Equation

Consider

$$\frac{u'(C_t)}{P_t} = \beta(1+i_t)\mathbb{E}_t^{\theta} \left[\frac{u'(C_{t+1})}{P_{t+1}} \right]$$

Notice!

$$\mathbb{E}_t^{\theta}[X_{t+1}Y_t] \neq \mathbb{E}_t^{\theta}[X_{t+1}]Y_t$$

▶ Hence, use conditioning on t-1:

$$u'(C_t)\frac{P_{t-1}}{P_t} = \beta(1+i_t)\mathbb{E}_t^{\theta}\left[u'(C_{t+1})\frac{P_{t-1}}{P_t}\frac{P_t}{P_{t+1}}\right]$$

and approximate

Obtaining Log-Linear Approximation

We have:

$$u'(C_t)\frac{P_{t-1}}{P_t} = \beta(1+i_t)\mathbb{E}_t^{\theta}\left[u'(C_{t+1})\frac{P_{t-1}}{P_t}\frac{P_t}{P_{t+1}}\right]$$

Resulting diagnostic Fisher equation:

$$\hat{r}_t = \hat{i}_t - \mathbb{E}_t[\pi_{t+1}] \underbrace{-\theta(\pi_t - \mathbb{E}_{t-1}[\pi_t])}_{P_{t-1}/P_t} \underbrace{-\theta(\mathbb{E}_t[\pi_{t+1}] - \mathbb{E}_{t-1}[\pi_{t+1}])}_{P_t/P_{t+1}}$$

► Appendix presents loglinearization steps of full DSGE

Implications for New Keynesian Model

Model

$$\hat{y}_t = \mathbb{E}_t^{\theta}[\hat{y}_{t+1}] - (\hat{i}_t - \mathbb{E}_t^{\theta}[\pi_{t+1}]) + \theta(\pi_t - \mathbb{E}_{t-1}[\pi_t])$$

$$\pi_t = \beta \mathbb{E}_t^{\theta}[\pi_{t+1}] + \kappa(\hat{y}_t - \hat{a}_t)$$

$$\hat{i}_t = \phi_{\pi}\pi_t + \phi_{\times}(\hat{y}_t - \hat{a}_t)$$

- ► Euler equation combines both DE and RE
- ▶ $\theta = 1$ (Bordalo et al. 2020)

Amplification: NK vs. RBC

► New Keynesian Model

Variable	RE	DE	Percentage Increase
Output	0.0048	0.0085	77%

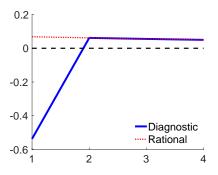
Volatility of output increases

► (Frictionless) Real Business Cycle Model

Variable	RE	DE	Percentage Increase
Output	0.0064	0.0059	-7%
Consumption	0.0015	0.0030	100%
Investment	0.0533	0.0503	-6%

Volatility of output falls

"Covid" Shock: Fall of Output Gap After Negative TFP Shock



Intuition: DE agent expects TFP to fall by a lot (in excess of reality)

⇒ Sharp drop in consumption

Fiscal Policy

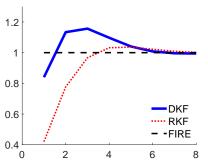
Proposition

Consider i.i.d. government spending shocks.

- 1. Under DE, the multiplier is greater than 1 iif $\theta > \phi_{\pi}$.
- 2. The multiplier is greater under DE than under RE.
- 3. The multiplier is increasing in θ , and tends to ∞ as $\theta \to \phi_{\pi} + \kappa^{-1}$.
- Diagnostic Fisher equation: $\hat{r}_t = \hat{i}_t - \mathbb{E}_t^{\theta}[\pi_{t+1}] - \theta(\pi_t - \mathbb{E}_{t-1}[\pi_t])$
- Role of endogenous extrapolation of inflation
- ▶ Dominates effect of monetary policy if $\theta > \phi_{\pi}$

Introducing Imperfect Info: Diagnostic Kalman Filter

Investigate in Blanchard, L'Huillier & Lorenzoni (2013).



Short-run underreaction, delayed overreaction, and humps.

Bayesian Estimation

Rich model with host of frictions and shocks

Question: Do DE improve the fit to the data, even in the presence of all these other nominal, real, and informational frictions?

 \blacktriangleright θ post. mode: 0.99, conf. interval: [0.77; 1.21]

Marginal likelihoods:

► RE model: -1590.66

DE model: improvement to -1584.31

➤ $2 \log(BF) = 12.70$ Strong evidence in favor of DE

Summary

- ▶ How to integrate diagnostic expectations into linear models
- ▶ Rich insights in the context of NK models
- Better fit to business cycle data