Rebates and competition between payment card networks¹

Vera Lubbersen (DNB, VU), Wilko Bolt (DNB, VU)

22nd Simulator Seminar, 30th of August 2024, Helsinki

¹The usual 'central bank' disclaimer applies.

Motivation: Why do card networks give rebates?

- VISA and Mastercard among most profitable companies in the world: net profit margin 45-55%
- Both spend 25-30% gross revenues, i.e. 10 billion per year, on rebates
- Existing literature focuses on the interchange fee (IF) now regulated in many jurisdictions
- New model to analyse incentives and impact of rebates

Flows of payment fees

Overview

Two-sided platform competition model:

- Low (for some negative) heterogeneous (stand-alone) card benefits
- Analysing the impact of increasing homogeneous transaction benefits

Main finding: Card networks offer rebates to issuing/acquiring banks to maximise card issuance and card acceptance as profit margins increase with transaction benefits

Card network competition reduces profit margins especially for networks with large transaction benefits

Literature

Starts with Baxter (1983): IF socially optimal if consumer fails to pay by card though joint benefit exceeds total resource cost.

Focus on IF pricing distortions:

- Market power (issuing) banks (Schmalensee, 2002; Wright, 2003, 2004; R&T, 2002, 2003)
- Heterogeneity of merchants/consumers (Wright, 2003, 2004; R&T, 2002, 2003)
- Competition between merchants (R&T, 2011)
- Card network competition (Guthrie & Wright, 2007)
- Usage decision made on one side (Bedre-Defolie & Calvano, 2013)

Another issue: difference between card and transaction benefits....

Model: basics

- Consumer and merchant side, indexed by i = c, m, populated by a unit-mass continuum of agents
- Each agent has a type ω_i and derives a gross payoff:

$$u_i(\omega_i, n_j) = B_i + \alpha_i n_j \tag{1}$$

by joining the card network and from transacting with a mass of agents of size n_j from side j, $j \neq i$

- Heterogeneous (stand-alone) card benefit, B_i, is an independent draw from some distribution G_i and is the agent's private information
- Homogeneous transaction benefit, α_i, is the same for all side i agents and derived from transacting with agents from side j, j ≠ i

Model: pricing

- ▶ The total payment P_i has two components: $P_i = f_i n_j R_i$
- ► Transaction fee f_i is charged for every transaction with agents from side j ≠ i
- ► Card fee F_i paid to or card rebate R_i received from the network per cardholder/merchant (R_i = −F_i)

Model: demand and profit

Quasi linear preferences, i.e net payoff:
 u_i(ω_i, n_j) - P_i = B_i + α_in_j - f_in_j + R_i = B_i + R_i

Demand function on side i:

$$n_i = D_i(R_i) = 1 - G_i(R_i - \alpha_i n_j + f_i n_j) = 1 - G_i(R_i)$$
 (2)

▶ Payment usage: $D(R_c, R_m) = D_c(R_c) \times D_m(R_m)$

The card network's profits are specified by:

$$\Pi = (f_c D_m(R_m) - R_c - C_c) D_c(R_c) + (f_m D_c(R_c) - R_m - C_m) D_m(R_m)$$
(3)

with cost C_i for each side-i agent it brings on board
Equilibrium solution in the appendix on slide 25

Numerical example

Interior solution

Boundary solution merchants

Boundary solution consumers

Full market coverage

Numerical example outcomes

- ▶ Interior solution: $R_c^* = 0.63$, $R_m^* = -1.40$, $n_c^* = 0.56$, $n_m^* = 0.66$ and profits $\Pi = 3.43$
- ▶ Boundary solution merchants: $R_m^* = 2$, $R_c^* = 2.5$, $n_c^* = 0.75$, $n_m^* = 1$ and profits $\Pi = 4.63$
- Boundary solution consumers: $R_c^* = 5$, $R_m^* = 1$, $n_c^* = 1$, $n_m^* = 0.9$ and profits $\Pi = 7.1$
- Full market coverage: $R_c^* = 5$, $R_m^* = 2$, $n_c^* = n_m^* = 1$ and $\Pi = 2$

Findings

- Price structure of transaction fees is unimportant: $f_t = \alpha_c + \alpha_m$
- Rebates determined by the distribution of card benefits
- Suppose $\overline{B_m} > \overline{B_c}$ and the same variance of card benefits:
 - As total transaction benefits increase, rebates on the consumer side increase more than rebates on the merchant side
- Suppose $\overline{B_m} = \overline{B_c}$, but merchants more homogeneous than consumers:
 - As total transaction benefits increase, rebates on the merchant side are maximised earlier but lower than rebates on the consumer side

Duopoly model: basics

- Same assumptions as above, but two card networks, indexed by k = A, B
- Heterogeneous (stand-alone) card benefit, B^k_i, is an independent draw from some joint distribution G_i and is the agent's private information
- ▶ Platforms share the market and use so-called "insulated equilibrium" (IE) strategies: $T_i^k = f_i n_i^k R_i^k$
- Competitive bottleneck structure: consumers singlehome, merchants multihome
- Consumer demand (4), cash demand (5), merchant demand
 (6) and profit (7) in appendix
- Equilibrium FOC's in the appendix on slide 31

Competitive bottleneck

Panel A: 'singlehoming' consumers

Panel B: 'multihoming' merchants

What about the boundary solutions?

- FOC's hard to solve both analytically and numerically
- Consider each boundary solution where one or more constraints become binding, such as D^A_c + D^B_c = 1, D^A_m = 1 and D^B_m = 1, many mathematical constraints!
- Our solution: merchants are assumed homogeneous:
 B_m = R_m = 0
- One boundary solution where card networks share the consumer side: B^k_c + R^k_c > 0 for all consumers

Findings (1)

Figure set for: $\omega_c = (B_c^A, B_c^B)$ independently uniformly distributed [-5, 5] on both card networks (or a single card network), $C_c^A = C_c^B = 1$, and $C_m^A = C_m^B = 0$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ つへつ

Findings (2)

Figure set for: $\omega_c = (B_c^A, B_c^B)$ independently uniformly distributed [-5, 5] on both card networks (or a single card network), $C_c^A = C_c^B = 1$, and $C_m^A = C_m^B = 0$

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ つへつ

Discussion

- Homogeneous transaction benefits
- Fixed rebates
- Homogeneous merchants
- Consumer multihoming
- Inelastic demand on the product market
- No Surcharge Rule
- No competition between merchants
- What about market tipping???

Also: market tipping.. "Sneak Preview"

Figure set for: $\omega_c = (B_c^A, B_c^B)$ independently uniformly distributed [-5, 5] on both card networks (or a single card network), $C_c^A = C_c^B = 1$

Conclusion

- New model: difference between card benefits and transaction benefits
- Rebates are important in analysing market power of payment card networks
- Rebates to the side with lowest average card benefit, more heterogeneity and/or more "singlehoming"
- Role of boundary solutions for four-party card networks
- Monopoly profits increase with transaction benefits, while duopoly profits stabilise
- Still many open questions: welfare analysis, market tipping, etc...

Appendix

<ロト < 部 > < 言 > < 言 > こ き < こ > こ 24 / 31

Equilibrium outcome

In the interior solution, i.e. D_c(R_c) < 1 and D_m(R_m) < 1:
R_i^{*} = (f_i + f_j)n_j^{*}(R_j) - C_i - η_i(R_i)
In any of the two asymmetric boundary solutions, i.e. D_i(R_i) = 1 and D_j(R_j) < 1:
side *i* demand is maximized: D_i(R_i^{Max}) = 1.
side *j*: R_j^{*} = f_i + f_j - C_j - η_j(R_j).
Full market coverage, i.e. D_c(R_c) = 1 and D_m(R_m) = 1:
D_c(R_c^{Max}) = 1
D_m(R_m^{Max}) = 1

Price elasticity

Price elasticity of demand:

$$\eta_i(R_i) = -\frac{D_i(R_i)}{\partial D_i(R_i)/\partial R_i} = \frac{R_i}{\epsilon_i(R_i)} = \frac{1 - G_i(R_i)}{g_i(R_i)}$$

where $\epsilon_i(R_i)$ denotes the standard side-*i* price elasticity of quasi-demand as in R&T(2003).

Duopoly model: consumer demand functions

Consumer demand for card network k is given by:

$$n_{c}^{k} = D_{c}^{k}(R_{c}^{k}, R_{c}^{l}) = Pr\{\omega_{c} \in \Omega_{c} : B_{c}^{k} \ge B_{c}^{l} - R_{c}^{k} + R_{c}^{l} \\ \wedge B_{c}^{k} \ge -R_{c}^{k}\} = \int_{-R_{c}^{k}}^{\infty} \int_{-\infty}^{B_{c}^{k} + R_{c}^{k} - R_{c}^{l}} g_{c}(B_{c}^{k}, B_{c}^{l}) dB_{c}^{l} dB_{c}^{k}, \qquad (4)$$

$$k \neq l, \quad k, l = A, B$$

and corresponding "residual card" demand n_c^{\prime} , where g_c is the joint probability density function of consumer card values over card networks A and B.

Duopoly model: Cash demand function

Total cash use is given by:

$$n_{c}^{C} = 1 - n_{c}^{A} - n_{c}^{B} = \Pr\{\omega_{c} \in \Omega_{c} : B_{c}^{k} \leq -R_{c}^{k} \land B_{c}^{l} \leq -R_{c}^{l}\}$$
$$\int_{-\infty}^{-R_{c}^{A}} \int_{-\infty}^{-R_{c}^{B}} g_{c}(B_{c}^{A}, B_{c}^{B}) dB_{c}^{B} dB_{c}^{A}$$
(5)

Duopoly model: merchant demand function

Merchant demand for card network k is simply given by:

$$n_{m}^{k} = D_{m}(R_{m}^{k}) = Pr\{\omega_{m} \in \Omega_{m} : B_{m}^{k} \ge -R_{m}^{k}\}$$

= $1 - \int_{-\infty}^{-R_{m}^{k}} g_{m}(B_{m}^{k}) dB_{m}^{k} = 1 - G_{m}(-R_{m}^{k}), \quad k = A, B.$ (6)

Card network's profits is specified by:

$$\Pi^{k} = (f_{c}^{k} D_{m}^{k} (R_{m}^{k}) - R_{c}^{k} - C_{c}^{k}) D_{c}^{k} (R_{c}^{A}, R_{c}^{B}) + (f_{m} D_{c}^{k} (R_{c}^{A}, R_{c}^{B}) - R_{m}^{k} - C_{m}^{k}) D_{m}^{k} (R_{m}^{k})$$
(7)

Equilibrium outcome duopoly (interior solution)

FOC consumer side:

$$R_{c}^{k} = (f_{c}^{k} + f_{m}^{k})n_{m}^{k*}(R_{m}^{k}) - C_{c}^{k} - \mu_{c}^{k}(R_{c}^{A}, R_{c}^{B}),$$
(8)

where

$$\mu_c^k(R_c^A, R_c^B) = -\frac{D_c^k(R_c^A, R_c^B)}{\partial D_c^k(R_c^A, R_c^B))/\partial R_c^k} = \frac{1 - G_i(R_c^A, R_c^B)}{g_i(R_c^A, R_c^B)}$$

FOC merchant side:

$$R_m^k = (f_c^k + f_m^k) n_c^{k*} (R_c^A, R_c^B) - C_m^k - \eta_m^k (R_m^k),$$
(9)

where

$$\eta_m^k(R_m) = -\frac{D_m^k(R_m^k)}{\partial D_m^k(R_m^k)/\partial R_m^k} = \frac{1 - G_m(R_m^k)}{g_m(R_m^k)}$$