Navigating by Falling Stars: Monetary Policy with Fiscally Driven Natural Rates

Rodolfo G. Campos¹ Jesús Fernández-Villaverde² Galo Nuño¹ Peter Paz¹

¹Banco de España ²University of Pennsylvania

BANK OF FINLAND AND CEPR JOINT CONFERENCE FINLAND, SEPTEMBER 12-13TH, 2024

The views expressed in this paper are those of the authors and do not necessarily coincide with those of the Banco de España or the Eurosystem.

Determination of long-term inflation in the standard New Keynesian framework

• Natural Rate

$$r^* = 1/\beta - 1.$$

• Taylor rule:

$$i_t = \overline{r} + \overline{\pi} + \phi(\pi_t - \overline{\pi}).$$

Long-term inflation determination: If the central bank sets r

 r = *r**, then it can achieve its
 inflation target π

What happens in a heterogeneous-agent New Keynesian model?

- In a HANK model, the natural rate is a function of the stock of debt \overline{B} : $r^* = r(\overline{B})$.
- Debt-financed fiscal expansions then act as "natural rate" shocks.
- To achieve its target, the central bank must adapt its monetary policy to the long-term fiscal stance $\overline{r} = r(\overline{B})$.

Preview of findings

- There is a minimum level of debt compatible with the inflation target.
- If the central bank does not adapt its monetary policy to a permanent fiscal expansion, then long-term inflation will be higher.
- Compared to a RANK model, short-term dynamics are more inflationary even if the central bank adjusts, due to income effects.
- Robust monetary policy rules à la Orphanides-Williams perform much better in this environment than Taylor rules.
- We can infer the *policy gap* between the central bank intercept \overline{r} and the natural rate r^* using market data.

Model

Model overview

- 1. Heterogeneous households
 - Mass 1 of households, subject to idiosyncratic labor productivity.
- 2. New Keynesian block
 - Unions are similar to intermediate goods producers in a NK model.
 - Sticky wages: they set wages on behalf of workers.
 - Yields a simple wage Phillips curve.
- 3. Monetary and Fiscal Policy
 - Central bank follows a Taylor rule.
 - Treasury follows a fiscal rule.

4. Firms

- Representative firm with aggregate production function.
- Flexible prices.

Households

• Households solve:

$$V(a_{i,t}, z_{i,t}) = \max_{c_{i,t}, a_{i,t+1}} u(c_{i,t}) - v(n_{i,t}) + \beta \mathbb{E}_t [V(a_{i,t+1}, z_{i,t+1})]$$

s.t. $c_{i,t} + a_{i,t+1} = (1 + r_t)a_{i,t} + (1 - \tau)\frac{W_t}{P_t} z_{i,t}n_{i,t} + T_t,$
 $a_{i,t+1} \ge 0.$

• They choose $c_{i,t}$ and $a_{i,t+1}$. Their labor choice $n_{i,t}$ is is performed by unions.

$\circ c_{i,t}$: consumption	$\circ r_t$: return of bonds	$\circ z_{i,t}$: idiosyncratic
• $n_{i,t}$: working hours	$\circ W_t$: nominal wage	productivity
$\circ a_{i,t}$: asset position	$\circ P_t$: price level	$\circ T_t$: net transfer

Treasury: Fiscal Policy

• The treasury can issue one-period nominal bonds. Tax collection is given by:

$$\mathcal{T}_t = \int_0^1 \tau \frac{W_t}{P_t} z_{i,t} n_{i,t} di.$$

• Public debt *B_t* accumulates according to:

$$P_t B_t = (1 + i_{t-1}) P_{t-1} B_{t-1} + P_t (G_t + T_t - T_t).$$

• Fiscal rule:

$$G_t = \overline{G} - \phi_G(B_{t-1} - \overline{B}).$$

- *G_t* : government consumption
- $\circ \mathcal{T}_t$: tax collection $\circ \overline{B}$: debt target $\circ B_t$: public debt

Central bank: Monetary Policy

• The central bank follows a Taylor rule:

$$\log\left(1+i_t\right) = \max\left\{\log\left(1+\overline{r}\right) + \log\left(1+\overline{\pi}\right) + \phi_{\pi}\log\left(\frac{1+\pi_t}{1+\overline{\pi}}\right), 0\right\}.$$

 $\circ \ \overline{r}: \text{ real rate} \qquad \circ \ i_t: \text{ nominal rate} \qquad \circ \ \pi_t: \text{ inflation} \\ \text{intercept} \qquad \circ \ \overline{\pi}: \text{ inflation target}$

• Representative firm with linear aggregate production function:

$$Y_t = \Theta N_t.$$

• Flexible prices: $W_t/P_t = \Theta$.

 \circ Y_t : output \circ Θ : constant productivity \circ N_t : aggregate labor

Unions

• Wage Phillips curve:

$$\log\left(\frac{1+\pi_t^w}{1+\overline{\pi}}\right) = \kappa_w \left[-\frac{\epsilon_w - 1}{\epsilon_w}(1-\tau)\frac{W_t}{P_t}\int u'(c_{it})z_{it}di + v'(N_t)\right]N_t$$
$$+\beta \log\left(\frac{1+\pi_{t+1}^w}{1+\overline{\pi}}\right)$$

• Proportional allocation of labor: $n_{i,t} = N_t$

- $\circ \ \pi^{\it w}_t$: wage inflation
- \circ N_t : aggregate labor

- $\circ W_t$: nominal wage
- $\circ P_t$: price level

Aggregation and market clearing

• In equilibrium all agents optimize and the labor, bond, and good markets clear:

$$G_t + C_t = Y_t,$$
$$A_t = B_t,$$

where aggregates are:

$$N_t = \int_0^1 z_{i,t} n_{i,t} di,$$
$$A_t = \int_0^1 a_{i,t+1} di,$$
$$C_t = \int_0^1 c_{i,t} di.$$

Calibration

	Parameter	Value	Target/Sources	
Fiscal policy				
$\frac{r}{\overline{B}}$ $\frac{\overline{G}}{\overline{G}}$ τ T	Real interest rate (annual) Debt target Government spending target Tax rate Net transfers Coefficient in the fiscal rule	0.01 2.8 0.2 0.277 0.07 0.1	Baseline case Debt-to-GDP 70% Spending-to-GDP 20% Taxes/GDP in 2022 <i>B</i> constant in DSS Baseline case	
Monetary policy				
$\frac{\phi_{\pi}}{\overline{\pi}}$	Taylor rule coefficient Inflation target (annual)	1.25 0.02	Standard Standard	

calibration: preference, income, production

Monetary-fiscal interaction in the long run

Natural rate determination

• Demand for bonds:

$$A_{ss}\left(r^{*}\right)=\int_{0}^{1}a_{i,t+1}di.$$

• Supply of bonds:

$$B_{ss} = rac{(\overline{G} - G_{ss})}{\phi_G} + \overline{B}.$$

• Assume $\phi_G > 1/\beta - 1$; then the supply of bonds is:

$$B_{ss} = \overline{B}.$$

Deviations from the natural rate in the Taylor rule (policy gap) imply deviations of long-term inflation from the objective

$$\pi_{ss} pprox \overline{\pi} + rac{r^* - \overline{r}}{\phi_{\pi} - 1}.$$

There is a minimum debt level compatible with price stability

Steady-state nominal interest rate and inflation for different inflation targets

A surprise debt-financed fiscal expansion

Description of the exercise

- The economy starts out at a steady state. At t = 0 there is a surprise increase in \overline{B} from 70% of GDP to 80% of GDP (MIT shock).
- The fiscal authority lets the fiscal rule do its work, but adjusts \overline{G} to pay for the cost of the additional debt burden (necessary for the existence of a new steady state).
- These changes are common knowledge to all, including the central bank.
- The central bank adjusts \overline{r} in its Taylor rule and sets it equal to value of r^* in the new steady state to avoid inflation above its target in the long run.

Long term impact

	Initial steady state	New steady state		Difference	
		HANK	RANK	HANK	RANK
Bonds (% GDP)	70.00	80.00	80.00	10.00	10.00
Real interest rate	1.00	1.16	1.00	0.16	0.00
Nominal interest rate	3.02	3.19	3.02	0.17	0.00
Output	100.00	99.90	99.96	-0.10	-0.04
Consumption	80.00	80.16	80.07	0.16	0.07
Govt. consumption	20.00	19.74	19.89	-0.26	-0.11
Tax revenue	27.70	27.67	27.69	-0.03	-0.01
Primary surplus (% GDP)	0.70	0.93	0.80	0.23	0.10

Table 1: Steady state in the baseline HANK model and in the RANK model

Short term impact

Dynamics after a surprise debt-financed fiscal expansion

Decomposition of the response of inflation and consumption in terms of policy variables

Validating evidence and the policy gap

The response of the natural rate to a permanent increase in debt is quantitatively similar to simulations of the model

IRF of r^* to a 1 pp increase in the government debt-to-GDP ratio

Note: We estimate an LP with $r_{t+h}^* = \alpha_h + \beta_h D_{t-1} + \mathbf{x}_t \gamma_h + u_{t+h}$ and plot the regression coefficient β_h (the solid line) associated with the lagged public debt-to-GDP ratio D_{t-1} . We use the natural rate estimated by Lubik and Matthes (2015) as our measure of r^* . The control variables \mathbf{x}_t include four lags of the change in r^* , three additional lags of the public debt-to-GDP ratio, and four lags of the federal funds rate, the GDP deflator, and the unemployment rate. The shaded areas represent the 68% and 90% confidence intervals using Eicker–Huber–White standard errors.

Inferring the policy gap from market data

• From the Taylor rule in the DSS and the Fisher equation we obtain:

$$\pi_{ss} pprox \overline{\pi} + rac{r^* - \overline{r}}{\phi_{\pi} - 1},$$

• If \overline{r} is constant, then the policy gap can be computed as

$$r^* - \overline{r} = rac{\operatorname{cov}\left(r^*, \pi_{ss}
ight)}{\operatorname{var}\left(\pi_{ss}
ight)}\left(\pi_{ss} - \overline{\pi}
ight).$$

• With this equation we can infer the policy gap from market data.

Inferring the policy gap from market data

Long-term nominal and real rates and inflation

Policy gap $r^* - \overline{r}$

Note: Daily data. i_{ss} is the 5y5y forward nominal rate obtained from the zero-coupon U.S. yield curve. π_{ss} is the 5y5y ILS. r^* is computed as the difference $i_{ss} - \pi_{ss}$. The dashed vertical line marks the date when the 2% inflation target was announced (January 24, 2012).

Correcting for the term premium

Data adjusted for term premia

Policy gap $r^* - \overline{r}$ (adj. data)

Note: Monthly data. The estimated term premia are removed from market data using the methodology described by Hördahl and Tristani (2014). The dashed vertical line marks the date when the 2% inflation target was announced (January 24, 2012).

Thank you!

Calibration

	Parameter		Target/Sources			
	Preferences					
σ	Elasticity of intertemporal substitution	1	Standard			
φ	Frisch elasticity of labor supply	0.5	Standard			
ν_{φ}	Disutility of labor parameter	0.791	$N_{ss}=1$			
\dot{eta}	Quarterly discount factor	0.992	1% real interest rate in DSS			
Income process						
ρ_e	Persistence income process (annual)	0.91	Floden and Lindé (2001)			
σ_e	Std. dev. idiosyncratic shock (annual)	0.92	Floden and Lindé (2001)			
Production						
Y	Quarterly output	1	Normalization			
Θ	Constant level of TFP	1	Normalization			
κ_w	Slope of the wage Phillips curve	0.1	Aggarwal et al (2023)			
ϵ_w	Elasticity of substitution	10	Standard			

Decomposition of the response of aggregate consumption

HANK model

RANK model

Heterogeneity and inflation

• Expressing the Wage Phillips curve as an infinite discounted sum:

$$\log\left(\frac{1+\pi_0}{1+\overline{\pi}}\right) = \sum_{t=0}^{\infty} \beta^t \kappa_w \left[-\frac{(\epsilon_w - 1)}{\epsilon_w}(1-\tau) \int u'(c_{i,t}) z_{it} di + v'(N_t)\right] N_t.$$

- $\int u'(c_{i,t}) z_{it} di$: cross-sectional average of marginal utilities
- $v'(N_t)$: labor disutility
- N_t : hours worked or employment

Heterogeneity and inflation

• Decomposition of the response of inflation on impact:

◦ $\int u'(c_{i,t})z_{it}di - u'(C_t)$: consumption heterogeneity measure

Extensions: Robust monetary rules

Comparison of a standard Taylor Rule and Orphanides-Williams Rule in the HANK model

Extensions: Alternative fiscal policies

- Endogenous tax rate
 - **Government consumption** and **net transfers** remain **constant**. The treasury adjusts the tax rate τ each period so that the evolution of public debt replicates the evolution in our baseline analysis.
- Lump-sum net transfers:
 - **Government consumption** and the **tax rate** remain **constant**. The treasury adjusts net transfers each period so that the evolution of public debt replicates the evolution in our baseline analysis.

Extensions: Alternative fiscal policies

Dynamics after a surprise debt-financed fiscal expansion

Extensions: Anticipated effects

Dynamics of an anticipated debt-financed fiscal expansion

Extensions: A model with long-term debt, plain

Decomposition of the response of inflation and consumption in terms of policy variables

Inflation

Consumption

back

Extensions: Robust monetary rules

- An alternative to adjusting the intercept in the Taylor rule would be to use a monetary policy rule that does not require knowing the value of the natural rate.
- Orphanides and Williams Rule (2002): This rule links the change in nominal interest rates i_t - i_{t-1} to the deviation of inflation from its target π_t - π̄:

$$\log(1+i_t) = \log(1+i_{t-1}) + \phi_\pi \log\left(rac{1+\pi_t}{1+\overline{\pi}}
ight)$$

Alternative fiscal policies: comparison with the RANK model

HANK

RANK

Fiscal surplus in different steady states

Fiscal surplus