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Optimal monetary policy with large shocks

e Recent inflation surge reminded us large shocks matter

- Prices rise swiftly in response to higher marginal costs but do not drop
as fast when marginal costs fall

e Harding, Lindé and Trabandt (2022, 2023) propose a model
consistent with firms' asymmetric price setting behavior

- Nonlinear Phillips curve and state-dependent shock propagation when
far from the steady state

e Poses important policy question
- How do optimal monetary policy prescriptions change over the
business cycle in the face of large adverse supply shocks with price
setting asymmetries and a nonlinear Phillips curve?



e Study optimal monetary policy in a simple New Keynesian model
with strategic complementarities in price setting

e Use nonlinear model to study large adverse supply shocks

- Characterize Ramsey optimal policy in nonlinear model/LQ setup
- Role of strategic complementarities

- Small vs large shocks

- Commitment vs discretion

- Simple loss function vs Ramsey optimal policy



Preview of results

e Optimal monetary responds gradually and persistently with strategic
complementarities

e Optimal policy in nonlinear model is markedly more aggressive to curb
inflatinary pressures induced by large shocks

e Tylor rule is severely suboptimal

e Workhorse Linear-quadratic (LQ) setup misses important nonlinear effects
with state-dependent price setting

e Commitment plays a crucial role to aggressively curb inflation surges

e Similar results apply when central bank minimizes a simple loss function



Final goods producers

e Final good produced by a representative, perfectly competitive firm
using intermediate goods i with general technology (Kimball, 1995)

/OIG<’/§/(?> di =1 (1)

e Following Dotsey and King (2005); Levin, Lépez-Salido, Yun (2007)
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e When 1 =0, CES aggregator (no strategic complementarities)



Intermediate goods producers

e Differentiated goods produced by a continuum of monopolistically

competitive firms i using technology
Ye(i) = AeNe(i) 3)

e Profit maximization of firm i:

o
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subject to demand constraint.

e Marginal cost given by

where ¢; is a cost-push shock



Monetary policy: optimal policy vs. Taylor rule

e Optimal policy: the central bank maximizes social welfare,

Eo > B'U(Ce, Ny)

t=0

subject to the set of nonlinear equilibrium equations and the ZLB
constraint for the nominal interest rate.

e We consider optimal monetary policy under commitment from a
timeless perspective

e Taylor rule (subject to the ZLB):

ir/ 1 = max [1/'3 {r;} {ré} { \;/i}

where 7r¢ and Y; denote flexible price real interest rate and output ¢




Model solution and simulation

e Characterize planner’s problem following Levin and Lépez-Salido
(2004) and Levin, Onatski, Williams and Williams (2005)

e Solve model with extended path method in Dynare (Fair-Taylor)

e Stochastic simulation under certainty equivalence (sequence of MIT
shocks)

e Parameterization follows HLT plus standard values in literature



Table 1: Model parameter values

Parameters
B 0.995
o 2
X 25
0 0.66
€ 11
n -8
rr 1.5
Iy 0.125
ey 1
L 0

Discount factor

Inverse EIS

Inverse Frisch elasticity

Calvo price rigidity
Substitution elasticity

Kimball

Taylor rule: inflation

Taylor rule: output gap
Taylor rule: real potential rate

Cost-push does not affect Y,




IRFs to a small (0.50) adverse cost-push sho

IRFs to a 0.5¢ inflationary cost-push shock
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IRFs to a large (20) adverse cost-push shock

IRFs to a 2¢ inflationary cost-push shock
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Implications of optimal policy in nonlinear model and LQ setup

Simulated data densities with cost-push shocks
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Table 2: Simulated data moments

Optimal policy

Nonlinear model Linear (LQ) model
mean std skewness mean std skewness
Inflation -0.2 0.9 0 0 1.2 0
Output -0.5 0.5 -0.3 0 0.6 0
Policy rate 0.8 0.6 11 0 0.5 0
Distortion 0 0 1.2 0 0 -
Taylor rule
Nonlinear model Linear model
mean std skewness mean std skewness
Inflation 0.9 1.8 1.1 0 1.6 0
Output -0.2 0.4 -1.3 0 0.3 0
Policy rate 1.3 2.6 1.0 0 2.2 0
Distortion 0 0 1.5 0 0 -

Model simulations of 15,000 observations for cost-push shocks

» ZLB imposed » CES demand



Implications of optimal commitment policy with large shocks

e Optimal policy eliminates inflation skewness and brings it tightly
centered around the target

e Average inflation becomes slightly negative as the central bank leans

against big inflation surges

e Policy stance is tighter with a large cost in terms of output

e Discretion: what if policymaker cannot commit to optimal plan?
— Under discretion we assume the policy maker does not take the
future behavior of agents into account

e What if central bank follows a simple loss function?
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IRFs to small cost-push shock: commitment vs discretion

e Under discretion: persistent tight optimal policy prescription replaced with
transitory (stronger) tightening — inflationary bias

IRFs to a 0.5¢ inflationary cost-push shock
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IRFs to large cost-push shock: commitment vs discretion

e Under discretion: persistent tight optimal policy prescription replaced with
transitory (stronger) tightening — inflationary bias

IRFs to a 20 inflationary cost-push shock
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IRFs to small cost-push shock: simple loss function

e Alternative to Ramsey optimal policy: minimize L = % (72 4+ A %2)
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IRFs to large cost-push shock: simple loss function

e Alternative to Ramsey optimal policy: minimize L = % (72 4+ A %2)

IRFs to a 2¢ inflationary cost-push shock
—e— Optimal Policy (Nonlinear Model) = ® - Optimal Policy (Linear Model, LQ)
—+—Loss Function (Nonlinear Model) = # =Loss Function (Linear Model)
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Concluding remarks

e Strategic complementarities in price setting crucially affect optimal

monetary policy response to adverse cost-push shocks

e Optimal policy in nonlinear model responds much more aggressively
to larger inflationary shocks to contain stronger inflation response
- LQ approach misses important role of state-dependent inflation
dynamics
- Commitment plays key role for optimal policy. Under discretion most
of the persistent optimal policy response disappears

e Ongoing work
- Role of uncertainty for optimal monetary policy design
- Design of simple rules that come closer to the optimal policy
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IRFs to a 0.50 cost-push shock, no strategic complementarities

IRFs to a 0.5¢ inflationary cost-push shock (no strategic complementarities)
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IRFs to a 20

cost-push shock, no strategic complementarities

IRFs to a 20 inflationary cost-push shock (no strategic complementarities)
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—+—Taylor Rule (Nonlinear Model)
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Optimal policy — ZLB imposed

0.4

Simulated data densities with cost-push shocks
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Table Al: Simulated data moments

Optimal policy

Nonlinear model

Linear (LQ) model

mean std skewness mean std skewness
Inflation -0.3 0.9 0.1 0 1.2 0
Output -0.5 0.5 -0.3 0 0.6 0
Policy rate 0.8 0.6 1.1 0 0.5 0
Distortion 0 0 1.2 0 0 -
Taylor rule
Nonlinear model Linear model
mean std skewness mean std skewness
Inflation 0.9 1.8 1.1 0 1.6 0
Output -0.2 0.4 -1.3 0 0.3 -0.6
Policy rate 1.3 2.6 11 0.2 1.9 0.7
Distortion 0 0 14 0 0 -




Optimal policy with CES demand

Simulated data densities with cost-push shocks (no strategic complementarities)
— Optimal Policy (Nonlinear Model) = — Optimal Policy (Linear Model, LQ)
Taylor Rule (Nonlinear Model) = = Taylor Rule (Linear Model)
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Table A2: Simulated data moments (CES)

Optimal policy

Nonlinear model Linear (LQ) model
mean std skewness mean std skewness
Inflation 0 0.4 1.2 0 0.4 1.2
Output 0 0.5 -0.3 0 0.6 -0.4
Policy rate 0.3 2.4 0.9 0.3 2.4 0.9
Distortion 0 0 4.6 0 0 -
Taylor rule
Nonlinear model Linear model
mean std skewness mean std skewness
Inflation -0.1 1.9 -0.8 -0.1 1.8 -0.5
Output 0 0.3 -0.5 0 0.3 -0.6
Policy rate 0.3 1.9 0.5 0.3 1.9 0.7
Distortion 0.1 0.1 2.6 0 0 -




Optimal policy with CES demand — ZLB imposed

Simulated data densities with cost-push shocks (no strategic complementarities)
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Small shocks

e Simulations under same (small) shocks for T = 15000 periods

Simulated data densities with cost-push shocks
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Table A3: Simulated data moments (small shocks)

Optimal policy

Nonlinear model Linear (LQ) model
mean std skewness mean std skewness
Inflation 0 0.2 0 0 0.2 0
Output 0 0.1 -0.1 0 0.1 0
Policy rate 0.1 0.1 0 0 0.1 0
Distortion 0 0 1.7 0 0 -
Taylor rule
Nonlinear model Linear model

mean std skewness mean std skewness

Inflation 0 0.3 0.4 0 0.3 0
Output 0 0.1 -0.4 0 0.1 0
Policy rate 0.1 0.5 0.4 0 0.4 0
Distortion 0 0 2.9 0 0 -




Small shocks — no strategic complementarities

e Simulations under same (small) shocks for T = 15000 periods

Simulated data densities with cost-push shocks (no strategic complementarities)
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Table A4: Simulated data moments (CES, small shocks)

Optimal policy

Nonlinear model Linear (LQ) model
mean std skewness mean std skewness
Inflation 0 0.1 0.1 0 0.1 0.1
Output 0 0.1 0.1 0 0.1 0
Policy rate 0 0.6 0 0 0.6 0
Distortion 0 0 2.2 0 0 -
Taylor rule
Nonlinear model Linear model

mean std skewness mean std skewness

Inflation 0 0.3 -0.1 0 0.3 0
Output 0 0.1 0.1 0 0.1 0
Policy rate 0 0.5 -0.1 0 0.5 0
Distortion 0 0 1.9 0 0 -




Table A5: Simulated data moments (No ZLB, CES)

Optimal policy

Nonlinear model Linear (LQ) model
mean std skewness mean std skewness
Inflation 0 0.3 0.1 0 0.3 0
Output 0 0.6 0.1 0 0.6 0
Policy rate 0 3.1 -0.1 0 3.0 0
Distortion 0 0 2.1 0 0 -
Taylor rule
Nonlinear model Linear model

mean std skewness mean std skewness

Inflation 0 1.6 -0.2 0 1.6 0
Output 0 0.3 0.2 0 0.3 0
Policy rate 0 2.3 -0.2 0 2.3 0
Distortion 0.1 0 1.9 0 0 -
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