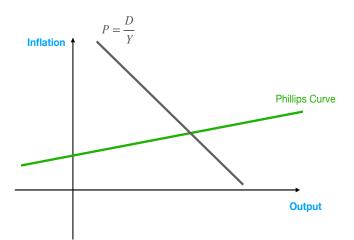
A Nominal Demand Augmented Phillips Curve

Marcus Hagedorn

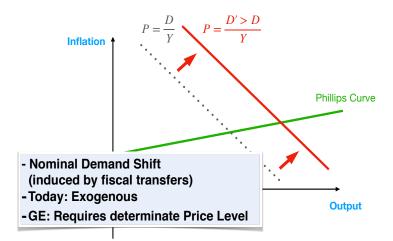
University of Oslo and CEPR

Bank of Finland and CEPR Joint Conference Helsinki, 12-13 September 2024

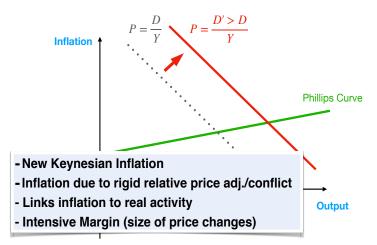
NEW KEYNESIAN PHILLIPS CURVE One Period Version

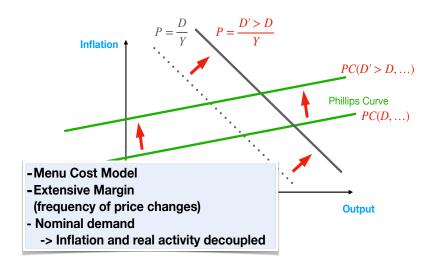


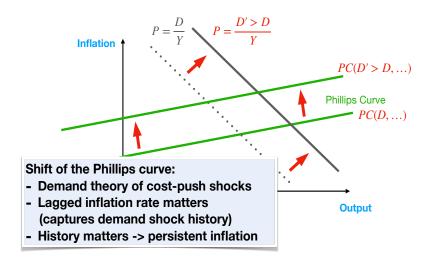
DEMAND CURVE SHIFT

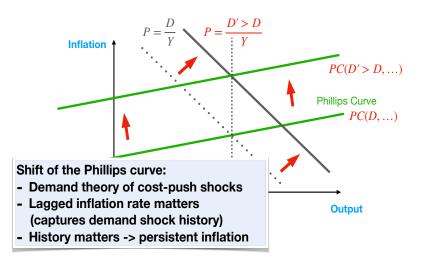


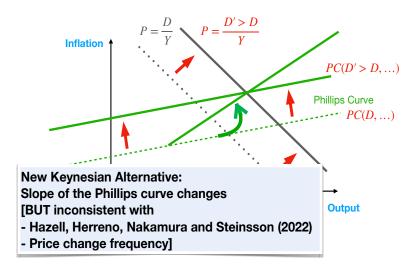
DEMAND CURVE SHIFT

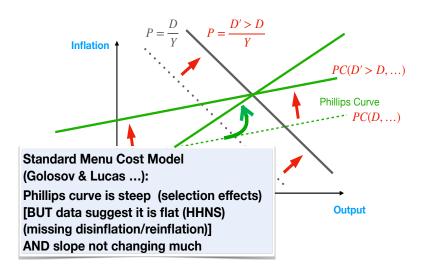


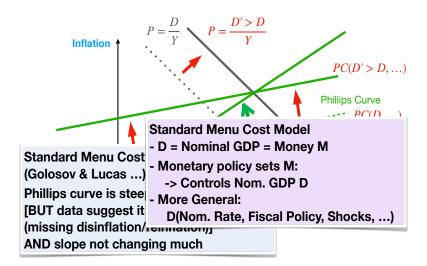












Nominal Demand Augmented Phillips Curve

Summarizing:

Menu-cost model:Intensive Margin& Extensive MarginPhillips curve:Moving along the PC& Shift of the PCIntegrating:New Keynesian& "Helicopter" Inflation

Nominal Demand Augmented Phillips Curve

Summarizing:

Menu-cost model:	Intensive Margin	& Extensive Margin
Phillips curve:	Moving along the PC	& Shift of the PC
Integrating:	New Keynesian	& "Helicopter" Inflation

Today:

Empirical Evidence [building on Hazell et. al.] and Theory

1. Nominal Demand Augmented Phillips Curve

- ► New Keynesian real activity component
- ► Nominal demand component
- 2. Lagged Inflation

STATE-DEPENDENT PRICE SETTING

- Firms indexed by $i \in [0, 1]$ set price $p_t(i)$.
- ► Idiosyncratic price adjustment costs.
- ► Nominal demand D_t and price level $P_t = \left[\int_0^1 p_t(i)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$
- ▶ Prob. of adjusting its price $p_{t-1}(i)$ prior to knowing adj. cost:

$$\Lambda_t(p_{t-1}(i), P_t, D_t)$$

► Aggregate price dynamics:

$$= \frac{\prod_{t=0}^{1-\epsilon} - 1}{\left[\int_{0}^{1} [p_{t}^{*}(i)^{1-\epsilon} - p_{t-1}(i)^{1-\epsilon}]\Lambda(p_{t-1}(i), P_{t}, D_{t})di\right]}{P_{t-1}^{1-\epsilon}}$$

PRICE SETTING MODEL Nominal Demand Augmented Phillips Curve (NDPC)

► Log-linearizing [Caballero & Engel 2007]

$$\pi_{t} = (\hat{p}_{t}^{*} - \hat{P}_{t-1}) \underbrace{\int_{0}^{1} \Lambda(p_{t-1}(i), P_{t-1}, D_{t-1}) di}_{=:\bar{\Lambda}} \quad \text{[Intensive Margin]}$$
$$+ \underbrace{\int_{0}^{1} \frac{1 - \left(\frac{p_{t-1}(i)}{P_{t-1}}\right)^{1-\epsilon}}{1-\epsilon} \hat{\Lambda}(i) di}_{=:\phi} \quad \text{[Extensive Margin]}$$

• Linearizing extensive margin $(\phi^D \ge 0, \phi^P \le 0)$ $\phi = \phi^D \Delta D_t + \phi^P \pi_t.$

► The optimal price [One Period model]:

$$\hat{p}_t^* - \hat{P}_{t-1} = \hat{m}c_t + \hat{P}_t - \hat{P}_{t-1},$$

• Solving for the inflation rate π_t :

$$\pi_t = \underbrace{\zeta}_{\geq 0} \hat{m}c_t + \underbrace{\Phi^D}_{\geq 0} \Delta D_t$$

PRICE SETTING MODEL NDPC - INFINITE HORIZON

▶ Optimal Price [Dotsey, King & Wolman 1999]

$$(\hat{p}_t^* - \hat{P}_{t-1}) = \Xi E_t \sum_{k=0}^{\infty} \beta^k \lambda_{k,t} [\hat{m}c_{t+k} + (\hat{P}_{t+k} - \hat{P}_{t-1})]$$

• Using this in $\pi_t = (\hat{p}_t^* - \hat{P}_{t-1})\bar{\Lambda} + \phi_t$ and rearranging:

$$\pi_t = \frac{(\bar{\Lambda} \Xi)}{1 - \bar{\Lambda}} E_t \sum_{k=0}^{\infty} \beta^k \hat{mc}_{t+k} + \frac{\Phi_t}{1 - \bar{\Lambda}}$$

• Φ_t depends on $\Delta D_t, \Delta D_{t-1}, \Delta D_{t-2}, \ldots$

$$\pi_t = \zeta E_t \sum_{k=0}^{\infty} \beta^k \hat{m} c_{t+k} + \Phi_D^0 \Delta D_t + \sum_{k=1}^{\infty} \Phi_D^k \Delta D_{t-k}$$

REGIONAL NDPC

Regional NDPC for Non-Tradables:

$$\pi^{N}_{r,t} = E_{t} \sum_{k=0}^{\infty} \beta^{k} (\zeta \hat{m} c^{N}_{r,t+k}) + \Phi^{0}_{D} \Delta D^{N}_{r,t} + \sum_{k=1}^{\infty} \Phi^{k}_{D} \Delta D^{N}_{r,t-k}$$

► $\pi_{r,t}^N$ - non-tradable inflation in region r.

• D_r^N - nominal demand for non-tradables in region r.

•
$$\hat{m}c_{r,t+k}^N = -\varphi^{-1}\hat{u}_{r,t} - \hat{p}_{r,t}^N$$
 $[mc^N = w/P^N; u \approx -w/P]$

▶ $\hat{u}_{r,t}$ - unemployment rate in region r

• $\hat{p}_{r,t}^N$ - relative price of non-tradables

REGIONAL NDPC

Regional NDPC for Non-Tradables:

$$\pi_{r,t}^{N} = E_{t} \sum_{k=0}^{\infty} \beta^{k} (\zeta \hat{m} c_{r,t+k}^{N}) + \Phi_{D}^{0} \Delta D_{r,t}^{N} + \sum_{k=1}^{\infty} \Phi_{D}^{k} \Delta D_{r,t-k}^{N}$$

► $\pi_{r,t}^N$ - non-tradable inflation in region r.

▶ D_r^N - nominal demand for non-tradables in region r.

•
$$\hat{m}c_{r,t+k}^N = -\varphi^{-1}\hat{u}_{r,t} - \hat{p}_{r,t}^N$$
 $[mc^N = w/P^N; u \approx -w/P]$

- ▶ $\hat{u}_{r,t}$ unemployment rate in region r
- ▶ $\hat{p}_{r,t}^N$ relative price of non-tradables
- ► Incomplete markets:

Nominal transfers \rightarrow Nominal Demand.

REGIONAL NDPC

Regional NDPC for Non-Tradables:

$$\pi_{r,t}^N = E_t \sum_{k=0}^\infty \beta^k (\zeta \hat{m} c_{r,t+k}^N) + \Phi_T^0 \Delta T_{r,t} + \sum_{k=1}^\infty \Phi_T^k \Delta T_{r,t-k}$$

► $\pi_{r,t}^N$ - non-tradable inflation in region r.

▶ D_r^N - nominal demand for non-tradables in region r.

•
$$\hat{m}c_{r,t+k}^N = -\varphi^{-1}\hat{u}_{r,t} - \hat{p}_{r,t}^N$$
 $[mc^N = w/P^N; u \approx -w/P]$

▶ $\hat{u}_{r,t}$ - unemployment rate in region r

▶ $\hat{p}_{r,t}^N$ - relative price of non-tradables

► Incomplete markets:

Nominal transfers \rightarrow Nominal Demand.

• T_r - nominal transfer to region r households.

Data

Regional Transfers

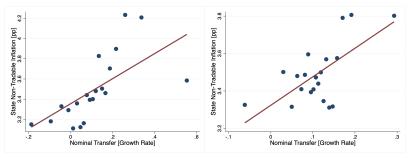
- ▶ BEA- Personal Current Transfer Receipts (SQINC35)
- "State unemployment insurance compensation"
 + "All other personal current transfer receipts"
- ▶ Includes income maintenance benefits (SSI, EITC, SNAP), Alaska Permanent Fund benefits and ARRA transfers
- ▶ State-Level Inflation Rates and Price Indices
 - ▶ Data from Hazell, Herreño, Nakamura and Steinsson (2022)
 - ▶ Use CPI Research Database provided by BLS
 - ► Non-shelter state inflation rates
 - ▶ Non-tradables: education, telephone, medical and recreational services, ...

Labor market data

- ► State-level unemployment rates from LAUS.
- ▶ State-industry level employment data from QCEW.

VISUALISATION BINNED SCATTERPLOTS

State Nominal transfer growth rate \leftrightarrow State Non-Tradable Inflation



No State and Time Fixed Effects

State and Time Fixed Effects

EMPIRICAL SPECIFICATION

$$\pi_{r,t}^N = \kappa E_t \sum_{k=0}^K \beta^k \hat{m} c_{r,t+k}^N + \Phi \Delta T_{r,t-4} + \gamma \pi_{r,t-4}^N + \alpha_r + \gamma_t + \epsilon_{r,t}$$

IDENTIFICATION BARTIK-TYPE INSTRUMENT

Tradable Bartik type instrument in region r in period t:

$$\mathcal{B}_{r,t} := \sum_{l} \bar{z}_{l,r} \times g_{-r,l,t},$$

- $\bar{z}_{l,r}$ is the time-average employment share of industry l in the tradable sector in region r
- $g_{-r,l,t}$ is the Period t three-year growth of industry r national employment leaving out region r

Idea:

- ▶ $g_{-r,l,t}$ → differential impact on NT-demand in Sector r depending on $\bar{z}_{l,r}$
- ► Example [HHNS]: Oil price shock affects Texas and Illinois differently
- ▶ No time correlation with the Texas/Illinois cost-difference.

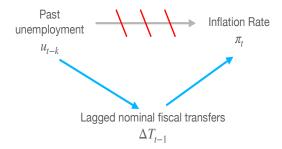
IDENTIFICATION Past unemployment rates

Relevance:

 $u_{r,t-k}$ triggers UI and other income maintenance programs:

Orthogonality:

$$E(u_{r,t-k}\epsilon_{r,t}) = 0, \quad k = \underline{k}, \underline{k} + 1, \dots, \overline{k}$$



IDENTIFICATION Past unemployment rates

Orthogonality:

$$E(u_{r,t-k}\epsilon_{r,t}) = 0, \quad k = \underline{k}, \underline{k} + 1, \dots, \overline{k}$$

Is correct

▶ in New Keynesian model if $\hat{mc}_t = u_t$:

$$\pi_{r,t}^N = \kappa \sum_{k=0}^{\infty} \beta^k \hat{m} c_{r,t+k}^N$$

• in menu cost model if $\hat{mc}_t = u_t$ and control for ΔD_{t-k} \Rightarrow I impose this theoretical identifying assumption

$$[\hat{m}c_t = u_t] + [\text{control } \Delta D_{t-k}] \rightarrow E(u_{r,t-k}\epsilon_{r,t}) = 0$$

IDENTIFICATION Past unemployment rates

Orthogonality:

$$E(u_{r,t-k}\epsilon_{r,t}) = 0, \quad k = \underline{k}, \underline{k} + 1, \dots, \overline{k}$$

BUT:

▶ Unemployment \neq Marginal cost gap \Rightarrow Residual

$$\hat{mc}_{r,t}^N = u_{r,t} + \frac{mc_{r,t}^{res}}{r,t}, \qquad E(u_{r,t}mc_{r,t}^{res}) = 0.$$

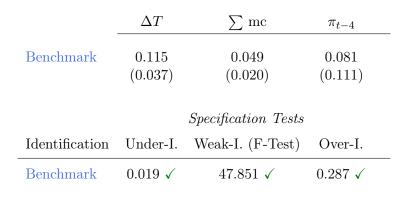
► Inflation:

$$\pi_{r,t}^{N} = \sum_{k=0}^{\infty} \beta^{k} u_{r,t+k} + \underbrace{\sum_{k=0}^{\infty} \beta^{k} m c_{r,t+k}^{res}}_{\hookrightarrow \epsilon_{r,t}}$$

► Orthogonality condition then reads:

$$E(u_{r,t-k}mc_{r,t}^{res}) = 0, \quad k = \underline{k}, \underline{k} + 1, \dots, \overline{k}.$$

• Overidentifying assumptions are tested.



	ΔT	\sum mc	π_{t-4}	ΔT_{t-4}
Benchmark	0.115 (0.037)	0.049 (0.020)	0.081 (0.111)	
Lagged Transfer	$0.145 \\ (0.017)$	0.067 (0.015)	$0.058 \\ (0.268)$	$\begin{array}{c} 0.115 \\ (0.036) \end{array}$
		Specification Tests	3	
Identification	Under-I.	Weak-I. (F-Test)	Over-I.	
Benchmark	0.019 🗸	47.851 ✓	0.287 √	
Lagged Transfer	0.007 \checkmark	21.801 √	$0.912\checkmark\checkmark$	
				-

	ΔT	\sum mc	π_{t-4}
Benchmark	$0.115 \\ (0.037)$	$0.049 \\ (0.020)$	$0.081 \\ (0.111)$
No Infl. Lag	$0.130 \\ (0.042)$	$0.052 \\ (0.025)$	

Specification Tests

Identification	Under-I.	Weak-I. (F-Test)	Over-I.
Benchmark	0.019 🗸	47.851 ✓	0.287 ✓
No Infl. Lag	0.028 🗸	46.776 \checkmark	0.282 √

	ΔT	\sum mc	π_{t-4}
Benchmark	$0.115 \\ (0.037)$	0.049 (0.020)	0.081 (0.111)
No Marg. Cost	$0.052 \\ (0.012)$		$0.086 \\ (0.106)$

Specification Tests

Identification	Under-I.	Weak-I. (F-Test)	Over-I.
Benchmark	0.019 🗸	47.851 ✓	0.287 ✓
No Marg. Cost	0.011 🗸	87.818 <i>✓</i>	0.211 ✓

	ΔT	$\sum mc$	π_{t-4}
Benchmark	$0.115 \\ (0.037)$	$0.049 \\ (0.020)$	0.081 (0.111)
No Transfer		$0.021 \\ (0.171)$	$0.080 \\ (0.107)$

Specification Tests

Identification	Under-I.	Weak-I. (F-Test)	Over-I.
Benchmark	0.019 🗸	47.851 ✓	0.287 ✓
No Transfer	0.001 🗸	156.5 \checkmark	0.030 🗡

DIFFERENT MARGINAL COST MEASURES

	Marg. Cost $\beta = 0.95$	Marg. Cost $eta=0.9$	Marg. Cost $\varphi = 1/2$	Marg. Cost $\varphi = 2$
ΔT $\sum mc$	$\begin{array}{c} 0.108 \\ (0.023) \\ -0.060 \\ (0.010) \end{array}$	$\begin{array}{c} 0.098 \\ (0.013) \\ -0.074 \\ (0.005) \end{array}$	$\begin{array}{c} 0.115 \\ (0.037) \\ -0.024 \\ (0.020) \end{array}$	$\begin{array}{c} 0.115 \\ (0.037) \\ -0.097 \\ (0.020) \end{array}$
	Sp	pecification Te	sts	
Under-I.	0.009 🗸	0.006 🗸	0.019 🗸	0.019 🗸
Weak-I.	57.070 √	66.903 √	47.834 √	47.877 √
Over-I.	0.309 🗸	0.317 \checkmark	0.287 √	0.288 🗸

REAL DEMAND PHILLIPS CURVE ESTIMATES

	Inflation	Inflation
Real Transfer Growth	0.164 (0.938)	
Real Transfer Level		-39.075 (0.454)
\sum Marginal Cost	-0.023 (0.292)	$0.180 \\ (0.508)$

- ▶ Nominal and not real demand growth matters.
- Not proxy for real marginal cost: Real Level does not matter

RESULTS (AGGREGATE U.S. DATA) Indexation

Looking under the hood of the estimated time FE:

	Estimated Ti	ime FE $\hat{\gamma}_t$
Lag. Inflation, $\pi_{US,t-4}$	0.658 (0.000)	0.103 (0.531)
Lag. Pers. Income gr.	(0.000)	(0.001) 28.438 (0.017)
Lag. Social Security gr.		50.457 (0.004)

RESULTS (AGGREGATE U.S. DATA) INDEXATION Looking under the hood of the estimated time FE:

Estimated Time FE $\hat{\gamma}_t$ Lag. Inflation, $\pi_{US,t-4}$ 0.6580.103(0.000)(0.531)28.438Lag. Pers. Income gr. (0.017)Lag. Social Security gr. 50.457(0.004)

Year $t-1$	Year t
------------	----------

 $\xrightarrow{\text{Indexation,...}} \text{Personal Income growth}_{t-1} \xrightarrow{\text{NDPC}}$ π_{t-1} π_t

RESULTS (AGGREGATE U.S. DATA) INDEXATION Looking under the hood of the estimated time FE:

 Estimated Time FE $\hat{\gamma}_t$

 Lag. Inflation, $\pi_{US,t-4}$ 0.658
 0.103

 (0.000)
 (0.531)

 Lag. Pers. Income gr.
 28.438

 (0.017)
 (0.017)

 Lag. Social Security gr.
 50.457

 (0.004)
 (0.004)

Year $t-1$	Year t

 $\pi_{t-1} \xrightarrow{\text{Indexation,...}} \text{Personal Income growth}_{t-1} \xrightarrow{\text{NDPC}} \pi_t$

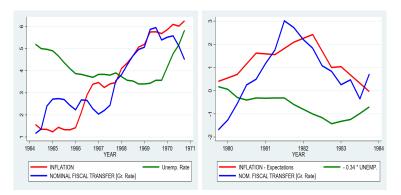
"Aggregate Implications"

Predicted inflation using U.S. Aggregate Personal Transfers

$$\pi_t^{pred} = const + 0.145\Delta T_{t-4}^{U.S.} + 0.115\Delta T_{t-8}^{U.S.}$$

U.S. 1964-1970

U.S. 1980 - 1984



CONCLUSION

Theoretical Contribution:

- ► Derived nominal demand augmented Phillips curve (NDPC)
- Two determinants of inflation: Real marginal costs and nominal demand growth
- ▶ NDPC \neq NKPC (without strong assumptions)

Empirical Contribution:

- ▶ Estimate NDPC in cross-section of U.S. states
- ▶ Confirm theoretical predictions: Nominal not real demand growth matters; not a proxy for marg. cost, looks like cost-push shock from NKPC perspective

More Slides

High level modeling choices

- ► Follow Midrigan (ECMA 2011)
- ► Introduce idiosyncratic firm productivity shocks
- ► Stochastic (exponential) adjustment costs
- ► No mass points
- ► Weekly and quarterly versions

Match key steady state targets:

- Frequency of (regular) weekly price changes: 2.9%.
- ► Distribution of size of (regular) price changes
- Replicates evidence on intensive and extensive margin in Alvarez, Beraja, Gonzalez-Rozada and Neumeyer (QJE 19):
 "From hyperinflation to stable prices: Argentina's evidence on menu cost models"

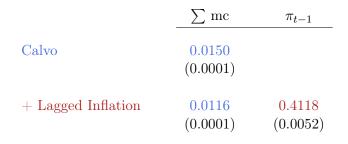
EXPERIMENTS

- ► Study response of model to shocks to nominal demand growth ΔD_t
- ► Linearize model with small MIT-shocks in sequence space (Boppart, Krusell & Mitman 2018, Auclert et al 2021)
- ▶ Consider two processes for demand growth:
 - Quarterly autocorrelation $\rho_D = 0.5$ (as in the data)
 - Quarterly autocorrelation $\rho_D = 0 \ (\equiv \text{ permanent level shock})$
- ▶ Simulate to obtain weekly model generated data
- ▶ Implement quarterly Phillips curve regressions:

$$\pi_t = \alpha \sum \mathbb{E}[\beta^k m c_{t+k}] + \gamma \pi_{t-1} + \delta \Delta D_{t-1} + \epsilon_t$$

RESULTS: $\rho_D = 0.5$

New Keynesian Calvo Specifications:



Standard errors in parentheses.

RESULTS: $\rho_D = 0.5$

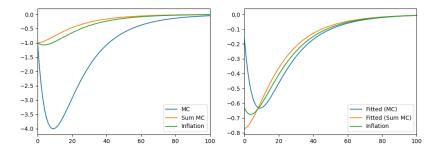
Full specification:

	\sum mc	π_{t-1}	ΔD
Calvo	0.0116 (0.0001)	0.4118 (0.0043)	
Full Specification	0.0080 (0.0000)	-0.0271 (0.0036)	

Standard errors in parentheses.

UNDERSTANDING THE RESULTS: WEEKLY IRFS $\rho_D = 0.5$

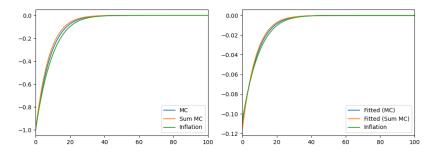
(Expected discounted) Output gaps don't coincide with inflation



Fitted (MC): Coefficient $\pi_{t-1} = 0.7828$ Fitted (Sum MC): Coefficient $\pi_{t-1} = 0.2907$

UNDERSTANDING THE RESULTS: WEEKLY IRFS $\rho_D = 0$

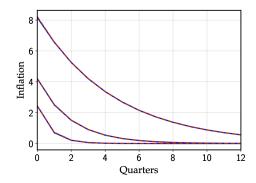
Nature of shock matters. With level shocks, (expected discounted) output gaps much closer to inflation



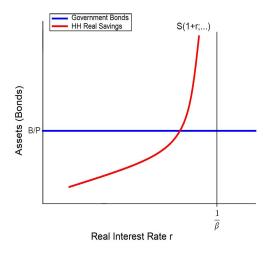
Fitted (MC): Coefficient $\pi_{t-1} = 0.1217$ Fitted (Sum MC): Coefficient $\pi_{t-1} = 0.065$

Comparison to Auclert et al 2023

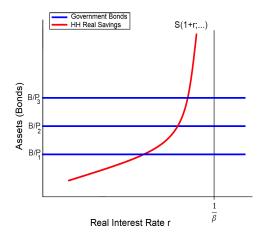
With AR(1) shocks ($\rho = \{0.3, 0.6, 0.8\}$) to real marginal costs, inflation and (expected discounted) output gaps coincide

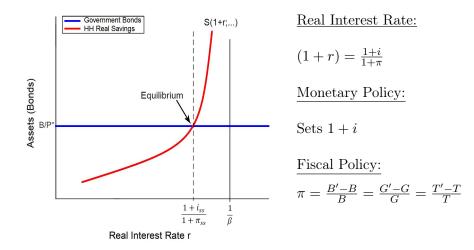


Asset Market in Incomplete Markets Model



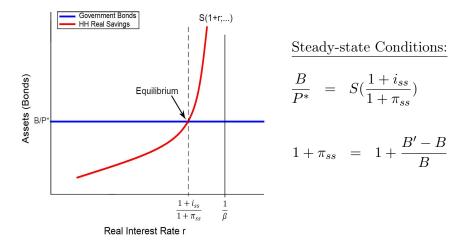
INDETERMINACY





- i : nominal interest rate
- B: nominal bonds
- r : real interest rate
- π : inflation rate

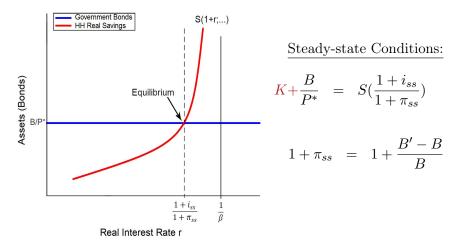
G: nominal government spending T: nominal tax revenue



- i : nominal interest rate
- B: nominal bonds
- r : real interest rate
- π : inflation rate

- G: nominal government spending
- T: nominal tax revenue

WITH CAPITAL K



- i: nominal interest rate
- B: nominal bonds G: nominal government spending
- r: real interest rate G:
- π : inflation rate

T: nominal tax revenue

With endogenous Money M

Steady-state Conditions

$$\begin{aligned} \frac{B}{P^*} &= S(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss}) \\ \frac{M}{P^*} &= L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss}) \\ 1+\pi_{ss} &= 1+\frac{B'-B}{B} = 1+\frac{M'-M}{M} \end{aligned}$$

Central bank provides

$$M = P^* L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss})$$

With endogenous Money M

Steady-state Conditions [Open Market operations]

$$\frac{B-M}{P^*} = S(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss})$$
$$\frac{M}{P^*} = L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss})$$
$$1+\pi_{ss} = 1+\frac{B'-B}{B} = 1+\frac{M'-M}{M}$$

Central bank provides

$$M = P^*L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss})$$

With endogenous Money M

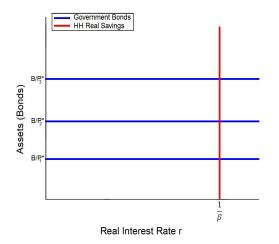
Steady-state Conditions [Open Market operations]

$$\begin{aligned} \frac{B-M}{P^*} &= S(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss}) \\ \frac{M}{P^*} &= L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss}) \\ \frac{B}{P^*} &= S(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss}) + L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss}) \\ 1+\pi_{ss} &= 1+\frac{B'-B}{B} = 1+\frac{M'-M}{M} \end{aligned}$$

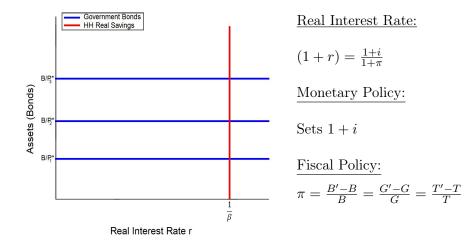
Central bank provides

$$M = P^* L(\frac{1+i_{ss}}{1+\pi_{ss}}, 1+\pi_{ss})$$

STEADY STATE PRICE LEVEL: COMPLETE MARKETS



STEADY STATE PRICE LEVEL: WHY TANK DOES NOT DELIVER



- i : nominal interest rate
- B: nominal bonds
- r : real interest rate
- π : inflation rate

G: nominal government spending T: nominal tax revenue